MRI and MR Arthography of Intrinsic Carpal Ligaments and Triangular Fibrocartilage Complex

Fabio Becce
Department of Diagnostic and Interventional Radiology
Lausanne University Hospital

Joints

- Distal radioulnar (DRUJ)
- Radiocarpal
- Midcarpal

Ligaments

- Triangular fibrocartilage complex (TFCC)
- Intrinsic:
 - Interosseous
 - Capsular
- Extrinsic:
 - Palmar
 - Dorsal
 - Collateral

TFCC

- TFC proper (articular disc)
- Radioulnar ligaments
- Ulnocarpal ligaments
- Ulnar collateral ligament
- Meniscus homologue
- Extensor carpi ulnaris tendon sheath

Intrinsic Ligaments

- Intrinsic interosseous:
 - Scapholunate (SL)
 - Lunotriquetral (LT)
Intrinsic Ligaments

- Intrinsic capsular:
 - Palmar scaphotriquetral ("arcuate")
 - Dorsal intercarpal

Extrinsic Ligaments

- Extrinsic palmar:
 - Radioscaphocapitate
 - Radiolunotriquetral
 - Ulnolunate
 - Ulnotriquetral

Imaging

- Radiography
- Ultrasonography
- Computed tomography (CT), CT arthrography
- Magnetic resonance imaging (MRI), MR arthrography (direct, indirect)

MRI and MR Arthrography

- System (field strength)
- Coil
- Patient position
- Protocol (sequences)

Field Strength

- Advantages of 3-Tesla (T) imaging:
 - Increased signal-to-noise ratio (SNR)
 → Higher spatial resolution
 → Shorter image acquisition time
 → Higher contrast-to-noise ratio (CNR)

- Challenges at 3 T:
 - Specific absorption rate (SAR)
 - Artifacts
Field Strength

- **Advantages of 7-T MRI**

- **Challenges at 7 T**

Patient Position

- Prone, wrist over the head ("Superman")
- Supine, wrist at the side
Patient Position

- Wrist in radial or ulnar deviation

MRI Protocol

- Axial and/or coronal T1-w TSE
- Coronal proton density (PD)-w with/without fat-suppression (FS)
- Axial T2-w TSE FS
- Sagittal PD-w with/without FS
- (Gd-enhanced iv. 3D T1-w GRE FS)

MRI Protocol

- Axial oblique vs. true axial plane

MRI Protocol

- Axial oblique vs. true axial plane

MRI Protocol

- Axial oblique vs. true axial plane

MRI Protocol

- Axial oblique vs. true axial plane

MRI Protocol

- 3D FSE vs. 2D FSE sequence
MRI Protocol

- 3D FSE vs. 2D FSE sequence

MRI

- Criteria for TFCC tears:
 - Degeneration (asymptomatic): increased signal intensity on T1- or PD-w images
 - Defect/Tear (asymptomatic/symptomatic): increased signal intensity on fluid-sensitive FS images extending to surface, associated with DRUJ effusion
 - Acute (0-3 months), subacute (3-12 months), chronic (>1 year)

MRI

- TFCC tears: Palmer class 1 (traumatic)

MRI

- TFCC tears: Palmer class 2 (degenerative)
 - 2A: TFCC wear
 - 2B: 2A + lunate or ulnar chondromalacia
 - 2C: TFCC perforation, lunate or ulnar chondromalacia
 - 2D: 2C + LT ligament tear
 - 2E: 2D + ulnocarpal osteoarthritis

TFCC Tears

Pfirrmann et al. Variants, pitfalls and asymptomatic findings in wrist and hand imaging. Eur J Radiol. 2005

Pitfalls
MRI

Criteria for intrinsic interosseous ligament tears:
- Increased signal intensity on fluid-sensitive FS images
- Morphologic distortion or complete absence
- Secondary SL dissociation (>3 mm), carpal arch disruption, ganglion cyst formation

Intrinsic Ligament Tears

MRI

Criteria for extrinsic ligament injuries:
- Acute sprain (grade 1): periligamentous edema
- Partial tear (grade 2): thickening due to peri- and intraligamentous edema
- Complete tear (grade 3): complete disruption
- Traction-related avulsive cystic changes
- Soft-tissue ganglion cysts

Extrinsic Ligament Tears

Becce et al. Dorsal fractures of the triquetrum: MRI findings with an emphasis on dorsal carpal ligament injuries. Acta Radiologica. 2013
Direct MR Arthrography

- Exploits the natural advantages gained from joint effusion:
 - Distends the joint capsule
 - Outlines intra-articular structures
 - Leaks into abnormalities

Indications

- TFCC tears
- SL and/or LT ligament tears
- Articular cartilage lesions
- Intra-articular (“loose”) bodies

Approaches

- Dorsal:
 - Unicompartmental (radiocarpal) arthrography
 - Bicompartmental
 - Tricompartmental

Guidance

- Fluoroscopic
- Sonographic
- CT
- MR
- Clinical landmarks

Cerezal et al. Wrist MR arthrography: how, why, when. Radiol Clin NAm. 2005
Lunenfeld et al. Magnetic resonance arthrography of the upper extremity. Radiol Clin NAm. 2013

Cerezal et al. Wrist MR arthrography: how, why, when. Radiol Clin NAm. 2005

Blend

Andreisek et al. Direct MR arthrography at 1.5 and 3.0 T: signal dependence on gadolinium and saline concentrations - phantom study. Radiology. 2008

Timing

MR Arthrography Protocol

- Axial, coronal and sagittal T1-w TSE FS and/or 3D T1-w GRE FS
- Coronal PD-w FS
- Axial T2-w TSE FS

TFCC Tears

Intrinsic Ligament Tears

Diagnostic Performance

• TFCC tears

Ringler. MRI of wrist ligaments. J Hand Surg Am. 2013

Diagnostic Performance

<table>
<thead>
<tr>
<th></th>
<th>1.5 T</th>
<th>3 T</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFCC</td>
<td>0.82</td>
<td>0.90</td>
<td>0.493</td>
</tr>
<tr>
<td>SL</td>
<td>0.57</td>
<td>0.70</td>
<td>0.482</td>
</tr>
<tr>
<td>LT</td>
<td>0.22</td>
<td>0.50</td>
<td>0.114</td>
</tr>
<tr>
<td>Specificity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFCC</td>
<td>0.59</td>
<td>0.74</td>
<td>0.378</td>
</tr>
<tr>
<td>SL</td>
<td>0.83</td>
<td>0.94</td>
<td>0.051</td>
</tr>
<tr>
<td>LT</td>
<td>0.94</td>
<td>0.94</td>
<td>0.898</td>
</tr>
</tbody>
</table>

Anderson et al. Diagnostic comparison of 1.5 Tesla and 3.0 Tesla preoperative MRI of the wrist in patients with unclassifiable wrist pain. J Hand Surg Am. 2008
Traction

Cerny et al. 3-T direct MRI arthrography of the wrist: value of finger trap distraction to assess intrinsic ligament and triangular fibrocartilage complex tears. *Eur J Radiol*. 2013

Leventhal et al. Conformational changes in the carpus during finger trap distraction. J Hand Surg Am. 2010