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OBSTRUCTIVE SLEEP APNEA SYNDROME (OSAS) IS 
A SLEEP BREATHING DISORDER CHARACTERIZED 
BY INTERMITTENT UPPER AIRWAY NARROWING OR 
collapse during sleep that occurs in 2% to 5% of adults.1-4 
Most OSAS patients complain of excess daytime sleepiness, 
cognitive impairment, and decreased psychological well-be-
ing.5-11 These daytime effects lead to an increased risk of mo-
tor vehicle accidents, work inefficiency, and have a negative 
social impact.12-15 Altered sleep architecture and decreased 
sleep efficiency are believed to result from sleep fragmenta-
tion caused by brief repeated arousals from sleep.16-18 Arous-
als have been found to be associated with central autonomic 
activation,19 which leads to increased sympathetic activity and 
resulting peripheral vasoconstriction. Repeated exposure to 
autonomic and hemodynamic stressors may be responsible 
for the significant association of OSAS with cardiovascular 
and cerebrovascular disorders.20-22 Autonomic activation con-
comitant with arousals from sleep induces acute measurable 
hemodynamic changes such as elevated arterial pressure and 
heart rate, and altered pulse transit time (PTT) and skin blood 
flow.23-31

Changes in PWA measured by finger plethysmography 
or photoplethysmography have been shown to be a reliable 
method of determining sympathetic activation.32-34 Finger 
plethysmography measures pulsatile blood volume in the 
fingertip using a peripheral arterial tonometry (PAT) de-
vice. Photoplethysmography is a noninvasive technique that 
measures the relative absorption of red light and infrared 
light across the finger. Arterial blood flow pulsation passing 
through finger arteries modulates light absorption and gener-
ates a pulse wave signal. This signal can be easily derived 
from conventional pulse oximeters and, unlike PAT, does not 
require a variable pressure at the fingertip. Photoplethysmo-
graphic pulse waves have also been used as markers of finger 
vasoconstriction.35

The gold standard diagnostic tool for OSAS is polysom-
nography (PSG), but for practical reasons limited-channel 
sleep recordings without EEG (type III portable monitors) are 
increasingly used as an alternative.36 While apneas are eas-
ily scored in the latter setting, hypopneas, which require, ac-
cording to the 2007 AASM manual either a concomitant drop 
in oxygen saturation of 3% or an arousal (alternative defini-
tion),37 are more difficult to detect, because no electroenceph-
alography (EEG) channels are available in these recordings. 
Moreover arousals are required to score respiratory effort re-
lated arousals (RERA).

The aim of this study was to determine whether PWA drops 
were associated with changes in cortical activity as measured 
by EEG spectral analysis, and whether these events could 
be considered as surrogates for arousals on limited-channel 
sleep recordings.
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METHODS

Subjects and Recordings
Data from 10 consecutive PSG recordings (70% of men) were 

selected from the patient database of our sleep center (CIRS). 
All 10 patients were referred for a suspicion of sleep disordered 
breathing. None had prior diagnosis of a central nervous system 
disease or were using medications affecting the central nervous 
system. The study was performed in compliance with Univer-
sity of Lausanne institutional ethical guidelines.

Sleep Recordings
Overnight recordings were performed in individual bed-

rooms using Embla N7000 (Embla Systems, Broomfield, CO) 
acquisition systems. Four EEG electrodes (C3, C4, O1, and O2) 
were applied to the scalp using the International 10–20 Sys-
tem,38 together with 2 electro-oculogram (EOG; one to each 
outer canthus) and 2 surface electromyogram (EMG) electrodes 
over submental muscles. EEG and EOG electrodes were refer-
enced to the linked earlobes (A1 + A2). Chest and abdominal 
movements, nasal air pressure, body position, sounds, and infra-
red video were also simultaneously recorded. Oxyhemoglobin 
saturation was recorded using a Nonin pulse oximeter (Nonin 
Medical, Inc., Plymouth, MN), using a sampling frequency of 
10 Hz. All recordings were performed with the assistance of a 
registered PSG technologist.

Data Analysis
Data were visually analyzed using Somnologica software 

version 5.1 (Embla Systems, Broomfield, CO), which displays 
PWA signal in addition to the PSG signals described above.

First, an experienced investigator blinded to the PWA channel 
performed the EEG analysis for the whole night. Sleep stages 
were scored according to standard criteria.39 Sleep arousals 
were defined as an abrupt shift in EEG frequency, including a 
theta-alpha pattern and/or a frequency higher than 16 Hz (but not 
spindles), lasting ≥ 3 s with ≥ 10 s of stable sleep preceding the 

change (American Sleep Disorders Association 1999 criteria).40,41 
If duration exceeded 15 s, the event was scored as an awakening.

Two investigators (AD, FE), blinded to the corresponding 
EEG channels and arousal scoring subsequently, analyzed the 
PWA signal. For each PSG recording, more than 100 consecutive 
PWA drops and at least the first complete NREM/REM sleep cy-
cle were analyzed. Finger PWA was measured for each cardiac 
cycle as the difference between the peak and nadir values of the 
pulse oximeter waveform. In order to calculate the percentage of 
decrease in each PWA, highest and lowest amplitudes for each 
PWA drops were measured using an electronic ruler provided by 
the software company. A 20% decrease in PWA was chosen as 
cutoff, as we considered it was the smallest identifiable drop on 
visual inspection. The recording period surrounding each PWA 
drop was divided into 5 epochs of 5 s: before (5-s epochs 1 and 
2), during (5-s epoch 3), and after (5-s epochs 4 and 5) PWA 
drop (Figure 1). PWA drop was considered to be linked to visu-
ally scored arousal when the arousal occurred during the five 5-s 
epochs period (usually epochs 4 and 5).

A total of 1085 PWA drops from 10 consecutive PSG re-
cordings were analyzed. EEG spectral analysis was performed 
for 5-s epochs 1-5 as defined above. The C4-A1 EEG channel 
was analyzed using a discrete fast Fourier transform (FFT) ap-
plied to each selected artifact-free EEG 5-s epoch with a fre-
quency resolution of 0.2 Hz. Each 5-s epoch was first treated 
with a Hanning window prior to computing the power spectra 
(in µV2). The whole spectrum was divided into the following 
frequency bands: delta (0.5 to 4.0 Hz); theta (4.1 to 8.0 Hz); 
alpha (8.1 to 12.0 Hz); sigma (12.1 to 16.0 Hz), and beta (16.1 
to 30.0 Hz). The power (in µV/Hz) of each frequency band was 
normalized and expressed as a percentage of total power.

Statistical Analysis
Data are reported as mean ± standard deviation (SD). Since 

data were not normally distributed, the difference in power den-
sities between 5-s epochs 1-5 was determined using a one-way 
repeated measure ANOVA by rank. A post hoc Tukey test was 

Figure 1—Example of PWA drop concomitant with EEG arousal. EEG spectral analysis was performed over each of the 5 consecutive 5-s epochs: before 
(5-s epochs 1 and 2), during (5-s epoch 3) and after (5-s epochs 4 and 5) the PWA drops.
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used to determine significant differences between all 5-s epoch 
pairs using SigmaStat software version 3.0 (Systat Software, 
San Jose, CA). The difference in magnitudes between PWA as-
sociated and not associated with an arousal was calculated using 
an unpaired student t-test. Positive predictive value (PPV) was 
calculated by dividing the number of true positives by the sum 
of false positives and true positives. Sensitivity was calculated 
by dividing the number of true positives by the sum of false 
negatives and true positives. The negative predictive value and 
specificity were not calculated since true negative events (i.e., 
no PWA drop and no EEG arousal) could not be determined.

RESULTS
Anthropometric and pertinent clinical data of the 10 patients 

are shown on Table 1. Most of the subjects presented with mod-
erate OSAS. None of them suffered from significant periodic 
limb movement.

The total number of microarousals and PWA drops in the 
analyzed segments of the 10 recordings were 1188 and 1085, 
respectively. Of the 1085 PWA drops, 769 (70.9%) were associ-
ated with a visually recognized microarousal and 316 (29.1%) 
were not associated with EEG microarousal. The mean ampli-
tude of the PWA drop was greater when a microarousal was 
associated than when no microarousal was detected (53.9% ± 
11.9% vs 47.7% ± 10.6%, P < 0.0001). Overall, the positive 
predictive value and sensitivity of PWA drops for electroen-
cephalographic microarousals were 71% and 65%, respective-
ly. In NREM 1 and 2 sleep stages, the positive predictive value 
was higher (91.4% for both) than in other sleep stages (Table 2).

The global analysis of all PWA drops revealed a significant 
increase in EEG power densities involving all frequencies (glob-
al effect, P < 0.001). Power density in 5-s epoch 3 (during PWA 
drop) was greater in all frequency bands compared to 5-s epochs 
1 and 2 (before drop), and 5-s epochs 4 and 5 (after drop). The 
most significant power density difference was found in the beta 
frequency between 5-s epoch 3 (during PWA drop) and the oth-
er four 5-s epochs. In all frequency bands, except for the delta 
band, power density showed a significant decrease during 5-s 
epochs 4 and 5 compared with 5-s epoch 3 (Figure 2A).

A subgroup analysis restricted to all PWA drops that were 
not associated with an arousal also revealed a significant in-
crease in EEG power in all frequency bands during PWA drops 
(global effect P < 0.001 except for alpha, P = 0.015). Pairwise 
comparisons between 5-s epoch 3 and the other 5-s epochs are 
shown in Figure 2B. During REM sleep, PWA drops were as-
sociated with significant cortical EEG changes in the delta and 
theta bands and not in alpha or beta bands (Figure 2C)

DISCUSSION
The main finding of this study is that PWA 

drops measured by finger photoplethysmogra-
phy are tightly associated with an increase in 
EEG power density, indicative of a change in 
cortical activity. This increase in EEG power 
density is present even when PWA drop is not 
associated with an EEG arousal.

During PWA drops, EEG power density was 
not only increased in high-frequency bands 
such as alpha and beta but also in lower fre-

quencies, including theta and delta bands, which may appear 
counterintuitive. This suggests that low-voltage, fast rhythmic 
EEG activation is not the only EEG sign of autonomic arousal. 
Similar observations have been previously reported at the end 
of respiratory events by Black et al.42 The authors reported a 
significant increase in delta power over a period from 6 s before 
to 2 s after esophageal pressure reversal (return to baseline level) 
in upper airway resistance syndrome (UARS). Pulse transit time 
(PTT) variations have also been shown to be associated with an 
increased delta power density43; however, contrary to our find-
ings, Black et al. did not find significant differences in the other 
frequency bands. One possible explanation for the discrepancy 
with our findings is the time delay reported by the authors be-
tween EEG activation and the actual detection of a difference in 
PTT. Increased power density in low frequency bands associ-
ated with an autonomic reaction such as a PWA drop may repre-
sent a central nervous system mechanism to prevent arousal and 
promote sleep continuity. This is also suggested by the longer 
duration of the increase in delta activity when PWA drops were 
associated with arousal (no significant decrease in 5-s epochs 4 
and 5), whereas delta power decreased significantly after PWA 
drops in the absence of arousal (Figures 2A and 2B).

We also found that PWA drops with a concomitant increase 
in EEG power density may occur even in the absence of stan-
dard arousal criteria.40,41 This is probably due to the fact that 
some PWA drops may be caused by subcortical brain activa-
tion,44 detectable in the EEG only with a quantitative method 
such as spectral analysis and not by visual inspection alone. 
However, the magnitude of PWA drop was significantly smaller 
in the absence of arousal (P < 0.0001). Black et al. also found 
that esophageal pressure reversal in UARS may occur without 
visually scored EEG arousal, but with significant EEG acti-
vation as detected by spectral analysis.42 The sleepiness com-
monly reported in UARS patients despite a low arousal index 
suggests that subtle changes in cortical activity may induce 

Table 2—Number of microarousals and PWA drops by sleep stage

NREM 1 NREM 2 NREM 3 NREM 4 REM Total
Microarousal (n) 264 820 20 20 64 1188
PWA drops (n) 93 673 56 111 152 1085
PWA drops without arousal (n) 8 58 37 95 118 316
PWA drops with arousal (n) 85 615 19 16 34 769
Sensitivity (%) 32.2 75.0 95.0 80.0 53.1 64.7
Positive Predictive Value (%) 91.4 91.4 33.9 14.4 22.4 70.9

Table 1—Baseline characteristics and key polysomnographic results

Mean SD 
Age (year) 41 17.31
BMI (kg/m2) 26.5 6.28
Epworth score 9.8 3.52
PLM index (events/h) 0.38 0.70
AHI (events/h) 9.7 6.50
Arousal index (events/h) 33.2 15.30
Sleep efficiency (%) 84.8 5.87
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daytime vigilance impairment. 
Because the clinical relevance 
of subcortical arousals are still 
largely unknown, it remains to be 
investigated whether autonomic 
markers such as PWA signal rep-
resent a more reliable method 
of determining changes in corti-
cal activity than traditional EEG 
visual inspection. Our findings 
warrant large prospective cohort 
studies to assess the impact of 
autonomic arousals on daytime 
sleepiness, traffic accidents, and 
cardiovascular morbidity.

Different markers of autonom-
ic activation such as PTT, finger 
plethysmography, and heart rate 
variation have been proposed in 
previous studies.23-33 However, 
when arousals were experimen-
tally induced by auditory tones 
in normal subjects, PWA drops 
yielded the best ROC curve re-
sult for detecting EEG-scored 
arousals compared with the other 
techniques.23 In another study, 
arousals following respiratory 
events were shown to induce a 
greater relative change in PWA 
than in heart rate.33 A proportion-
al relationship between arousal 
duration and the magnitude of 
PWA drop was also reported by 
the same authors. Unlike the 
above studies analyzing auto-
nomic responses following pro-
voked or spontaneous arousal, 
we based our analysis on the 
autonomic signal (PWA signal) 
and concomitant EEG. This tech-
nique allows us to assess whether 
PWA drops can be used as a sur-
rogate for EEG-defined arousals. 
Subtle respiratory events, such as 
UARS events or hypopnea end-
ing with an arousal (but without 
significant oxygen saturation 
drop), may be underestimated in 
limited-channel recordings (type 
III portable monitors) because 
of the absence of EEG signal. 
The highly significant temporal 
association we found between 
PWA drops and EEG activation 
suggests that this technique can 
be used as a surrogate for EEG 
changes in cortical activity and 
could thus become a helpful tool 

Figure 2—Relative power density for each 5-s epoch by frequency band. The power of each 5-s epoch is 
expressed as percentage of the mean power density of the whole 25-s period surrounding the PWA drop. 2A: 
All PWA drops (n = 1085). 2B: PWA drops without EEG Arousal (n = 316). 2C: PWA drops during REM sleep 
(n = 149). *Significant (P < 0.05) difference in power density compared to 5-s epoch 3 (during PWA drop) as 
determined by the post hoc Tukey test.
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B
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EMG, Electromyogram
EOG, Electrooculogram
FFT, Fast Fourier transform
OSAS, Obstructive sleep apnea syndrome
PPV, Positive predictive value
PSG, Polysomnography
PTT, Pulse transit time
PWA, Pulse wave amplitude
RDI, Respiratory disturbance index
UARS, Upper airway resistance syndrome
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when PWA drops were considered arousal equivalents for respi-
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the number of PWA drops exceeded by about 30% the number 
of EEG-defined arousals, a possible overestimation of respira-
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a scoring help to detect subtle respiratory events, a large pro-
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full PSG recording will be needed.

There are a few limitations to this study. First, we chose an 
arbitrary cutoff of 20% to consider a PWA drop significant. As 
mentioned earlier, we used this cutoff for practical reasons, 
since it represents in our view the smallest identifiable PWA 
drop on visual inspection. Second, the method we used did not 
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be calculated. We actually observed PWA drops not associated 
with visually scored arousals, but these events might relate to 
subtle EEG activations as suggested by spectral analysis. Ad-
ditionally, we analyzed consecutive unselected PSG recordings 
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cordings. Finally, in the 2007 AASM manual, more emphasis is 
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than to arousals. Despite these changes, we still believe that an 
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channel recordings since arousals can still be used to score hy-
popnea (alternative definition), and because they are mandatory 
to score respiratory effort related arousals (RERA).

CONCLUSION
Pulse wave amplitude drops observed on polygraphic sleep 

recordings are closely associated with increased EEG power 
density over a large frequency range. This suggests that drops 
in PWA could be considered as markers of changes in cortical 
activity, even in the absence of visually scored arousal. Increas-
ing understanding of this phenomenon may possibly lead to its 
use as a surrogate for arousal in limited-channel recordings or 
as new method of quantification for sleep fragmentation.
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