Neuroscience Research Center
2021-2022 Presentation

Content

Foreword ... 1
Laboratories .. 2
Laboratory for the Exploration of Memory in Neurosciences - LEMENS 3
Gilles Allali ... 4
Andrea Brioscì Guevara .. 5
Olivier Rouaud .. 7
Laboratory of Clinical Neurophysiology and non-Invasive Brain Stimulation ... 9
David Benninger ... 9
Laboratory of Cognitive Science 11
Stephanie Clarke ... 12
Sonia Crottaz-Herbette ... 13
NeuroRestore, Defitech Center for Interventional Neurotherapies 15
Grégoire Courtine, Jocelyne Bloch 15
Laboratory of Cellular and Molecular Neurotherapies - LNCM 17
Nicole Déglon ... 18
Liliane Tenenbaum ... 20
Laboratory of Acute Neurorehabilitation - LNRA 22
Karin Diserens ... 22
Laboratory for Research in Neuroimaging - LREN 24
Bogdan Draganski .. 25
Ferath Kherif ... 26
Marzia De Lucia ... 28
Antoine Lutti .. 30
Ann-Marie de Lange .. 32
Laboratories of Neuroimmunology ... 34
Laboratory of Neuroimmunology/Multiple Sclerosis - LNIS - Renaud Du Pasquier 35
Laboratory of Experimental Neuroimmunology - LNIE - Caroline Pot Kreis ... 37
Laboratory of Brain Tumour Biology and Genetics 39
Monika E. Hegi .. 40
Andreas F. Hottinger .. 42
Neuroscience Research Center
2021-2022 Presentation

Content

Laboratories of Stroke Research .. 44
 Laboratory of Stroke Research - Lorenz Hirt .. 45
 Laboratory of Clinical Stroke Research Unit - Patrik Michel .. 47
Laboratory of Clinical Neurosurgery Research ... 49
 Roy Thomas Daniel .. 50
Laboratory of Cortical Excitability and Arousal Disorders - LE²C ... 52
 Philippe Ryvlin ... 53
 Andrea Rossetti ... 55
 Jan Novy ... 56
Laboratory MySpace ... 57
 Andrea Serino .. 57
Laboratory of Nerve-Muscle Unit .. 59
 Marie Théaudin ... 59

Platforms .. 61
 Magnetic Resonance Imaging Platform - Bogdan Draganski ... 62
 Electrophysiology Platform - Marzia de Lucia .. 63
 Neuroscape Facility - Arseny Sokolov .. 64
 Gamma Knife Center - Marc Levivier .. 65
 Medical Informatics Platform of HBP (SP8) - Philippe Ryvlin .. 66
 Human Intracerebral EEG Platform (HIP) - Philippe Ryvlin ... 67
 BrainSystem: integrated redcap and datascience - Ferath Kherif .. 68
 Brain Tumor Biobank Platform - Monika E. Hegi ... 69
Foreword 2021-2022

The years 2021 and 2022 were contrasted with, on the one hand, the end of the COVID-19 crisis and, on the other hand, the dynamism of the CRN teams which resulted in academic appointments/promotions, prestigious funding and the publication of 217 scientific articles. Prof. Gilles Allali, Dominique Rothenfluh and Andrea Serino are to be congratulated for their appointment as head of the Leenaards Memory Center, Spinal Surgery Unit and director of the CRINN, respectively. Prof. Karin Diserens, Arseny Sokolov for their promotion to the rank of Associate Professor. Dr. Sonia Crottaz-Herbette and Constantin Tuleasca, Davide Strambo for their nomination as PD-MERc, Andrea Brioschi Guevara, Daniele Starnoni as MERC and finally Dr. Julien Bally as PD.

CRN members are also very involved in education and training programs to prepare the next generation of MD and PhD for multidisciplinary activities, collaborative networking and diverse career paths. Over the last two years, 15 students obtained their PhD in an attractive, cross-disciplinary environment. The new generation of scientists had the opportunity to present their current projects at the CRN 2022 symposium, whose theme was “gender in neuroscience”.

CRN members have secured 60 funding awards, from the Swiss National Science Foundation, European Horizon2020 programs, granting agencies, foundations, and industrial partners. The budget of the CRN was 14.5 million Swiss francs for 2021-2022. A special mention to Prof. Andrea Serino (PI) and Prof. Arseny Sokolov who have obtained INNOSUISSE Flagship funding for the SwissNeurorehab project. It is one of the 4 flagships financed by the Swiss Confederation in the field of health with a budget of more than 11 million Swiss francs over 5 years. This project brings together 22 Swiss partners, both academic and industrial, and aims to transform the organization of neurorehabilitation of cognitive and motor disorders in Switzerland through the development and implementation of technological innovations, particularly in favor of outpatient care. It will constitute the pillar of the SUN Research Center (CRINN).

Finally, in 2022, CRN launched a new initiative to support researchers. A three-year program was created to provide seed money for projects exploring new scientific approaches, methods, or ideas and to collect preliminary data to support subsequent applications to funding agencies. In addition, a call for support for CRN platforms was launched to develop new tools and to promote access to and use of these facilities. Three research and two platform projects were selected from the 12 applications received.

Additional information

CHUV
www.chuv.ch/crn

DNC
www.chuv.ch/en/neurosciences/dnc-home

Uniscience CRN
www.unil.ch/unisciences/crn

Contact
Neuroscience Research Center (CRN)
info.crm@chuv.ch
Laboratory for the Exploration of Memory in Neurosciences
LEMENS

Professor Gilles Allali, Head of laboratory
Senior Lecturer Andrea Brioschi Guevara
Dr Olivier Rouaud

Laboratory’s activity
The Laboratory for the Exploration of Memory in Neurosciences (LEMENS) represents the translational research facet of the Leenaards Memory Centre (www.centrememoire.ch), a Centre devoted to diagnosis and care of patients and their families facing the “Ageing-Brain Cognitive Diseases” (the ABCDs), such as Alzheimer’s disease and other associated conditions (fronto-temporal dementias, diffuse Lewy body disease, vascular dementia).
Research interests
My research focus on biomarkers of pathological aging among international cooperations implementing digital and clinical data of older adults, with a special interest on the biomarkers of normal pressure hydrocephalus and the impact of COVID-19 on the brain.

Scientific contributions in 2021-2022
> SARS-CoV-2 related encephalopathy: The SARS-CoV-2 related encephalopathy (SACRE) has been reported in more than 60% of patients admitted to intensive care units. With a multimodal neuroimaging and biological approach, and valid clinical assessment, we identified the clinical course; the neurobiological correlates; and the effect of HDG in SACRE.
> Neural correlates of brain changes in normal pressure hydrocephalus: Idiopathic normal pressure hydrocephalus (iNPH) represents the main cause of reversible dementia (reaching 6% of adults older than 80). Using a multimodal neuroimaging approach, we identified the structural and functional changes found in iNPH in comparison to non-iNPH and explored the structural and brain networks associated with reversible changes in iNPH.
> Impact of physiological and pathological ageing on gait control: Gait relates cognitive decline in the elderly population. Recently, gait has been used to define a new pre-dementia syndrome, called the Motoric Cognitive Risk (MCR) syndrome. Poor gait performances and MCR predict incident dementia. We did suggest that amyloid deposition relates to gait in MCI and prodromal AD subjects, but not in MCR.

Main publications in 2021-2022

ORCID number: 0000-0002-4455-6719

CHUV
www.chuv.ch/crn-lemens

Unisciences
www.unil.ch/unisciences/gillesallali
Research interests

My research focus is on the impact of psycho-social treatments on patients’ cognition, quality of life and daily life autonomy. I am also interested in improving neuropsychological assessment of elderly with cognitive decline.

Scientific contributions in 2021-2022

Psychosocial treatment

> In the prevention of a cognitive decline or of the impact of this decline in daily living activities, a great amount of studies showed a significantly positive impact of psychosocial treatments. The kind of treatment, doses and duration have yet to be specified with methodologically stronger studies.

Assessment

> Patients’ evaluation has to evolve. For example, the improvement of the assessment of patients with Alzheimer disease, fronto-temporal dementia and depression based on a musical and emotional tests is one of our current goals.
Main publications in 2021-2022

CHUV
www.chuv.ch/crn-lemens

www.centrememmoire.ch

Unisciences
www.unil.ch/unisciences/andreabrioschiguevara
Research interests
My interest focus is on biomarkers and treatment of Alzheimer’s disease and related disorders with a special interest on precision diagnostic, young onset dementia and clinical trials.

Scientific contributions in 2021-2022
Main publications in 2021-2022

ORCID number: 0000-0001-9767-8421

CHUV
www.chuv.ch/crn-lemens
www.centrememoire.ch
Laboratory of Clinical Neurophysiology and non-Invasive Brain Stimulation

Senior Lecturer David Benninger
Consultant/attending physician

Head of the Laboratory of Clinical Neurophysiology and non-Invasive Brain Stimulation
Laboratoire de neurophysiologie clinique, stimulation cérébrale non-invasive et motricité
david.benninger@chuv.ch

Affiliation
Service of neurology (NLG)

Keywords
Therapeutic studies for Parkinson
Motor system and movement disorders

Brain stimulation
Neurophysiology
Movement & gait analysis
Nerve-muscle disorders

Laboratory’s activity
> Randomized controlled therapeutic clinical trial on tDCS for the treatment of the freezing of gait in Parkinson’s disease.
> Multicenter randomized controlled therapeutic trial for gait disorder in Parkinson’s disease and atypical Parkinsonian disorders (FNS/DACH collaboration CHUV-EPFL with Innsbruck (A), Erlangen (D), Bozen (I), Luxembourg and Nijmegen (NL)).
> Robot-assisted assessment of the rigidity and tremor in Parkinson’s disease.
> Investigation of the motor cortex physiology using the triple stimulation technique.
> Investigation of the motor, sensorimotor and plasticity alterations in dystonia associated to a complex regional pain syndrome.

Research interests
Our lab is interested in movement disorders, clinical neurophysiology, brain stimulation and the human motor control. The main research we lead currently concerns Parkinson’s disease, dystonia, tremor and normal physiology essentially through transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), electroneuromyography (ENMG) combined with electroencephalography (EEG), kinematic analysis of movements and gait.

Scientific contributions in 2021-2022
> Consensus Statement on High-Intensity Focused Ultrasound for Functional Neurosurgery in Switzerland.
> Non-invasive brain stimulation for Parkinson’s disease.
> Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee.
> Combined tDCS-behavior therapy study for freezing of gait in PD.
> CRPS with dystonia.
> Cervical dystonia: contribution of cerebellar dysfunction.
> Cerebellar stimulation for Parkinson tremor.
Main publications in 2021-2022

ORCID number: 0000-0002-1049-9533

CHUV
www.chuv.ch/crn-neurophysiologie-clinique

Unisciences
www.unil.ch/unisciences/davidbenninger

Our research team mainly uses electrophysiological techniques. Either to record activity: at the cerebral level with electroencephalography (EEG - cap and recording) and muscle level with electromyography (EMG - electrodes and recording); or to interfere or modify ongoing cerebral activity (TMS - coil).
Laboratory of Cognitive Science

Professor Emeritus Stephanie Clarke, Head of the laboratory
Senior Lecturer, Privat-Docent Sonia Crottaz-Herbette

Laboratory’s activity
The laboratory works at the interface between clinical neurorehabilitation and basic cognitive neuroscience. The laboratory investigates cognitive functions in normal subjects and in brain-damaged patients, with particular interest in the organisation and plasticity of the human auditory cortex and attentional networks.

Professor Stephanie Clarke pursue innovative studies on auditory cognition showing that knowledge modulates the semantic representations of sounds, highlighting interactions between culture and brain organization.

Dr Sonia Crottaz-Herbette leads several projects that investigate the plasticity and brain reorganization consecutive to cognitive therapeutic interventions. Recent focus is made on the use of new technology, such as virtual-reality, for the cognitive rehabilitation of attention and working memory in stroke patients. Understanding the neural mechanisms, which underlie recovery after brain lesion, helps to design innovative therapeutic interventions and to apply them in clinical care.
Research interests
Prof. Stephanie Clarke focuses on auditory cognition, investigating sound representations, including spatial and temporal aspects, using psychophysical approaches, fMRI and EEG. Recent contributions give new insight to the malleability of semantic and spatial representations, both in health and in disease.

Scientific contributions in 2021-2022
> The fine-tuned neural representations of cognitive functions are disrupted by focal lesions and possibly by general conditions. The group studied the latter in the context of SARS-CoV2, in patients who suffered from severe COVID-19 but who did not present signs of overt brain damage.
> Semantic representations of sounds were shown to be modulated by knowledge, which is acquired by formal education, personal experience and/or social interactions. Work of the group on this topic highlighted some of the mechanisms, which underlie the interactions between culture and brain organisation and are of relevance to the understanding of human nature.
Dr. Sonia Crottaz-Herbette focuses on cerebral reorganizations following innovative cognitive interventions on attention and working memory in stroke patients, using task-related and resting-state fMRI. Investigations of the neural mechanisms underlying therapeutic interventions are essential for their impact on clinical practice.

Scientific contributions in 2021-2022

- Prism adaptation is used routinely to treat spatial attention deficits in neglect patients but the underlying mechanisms remain to be understood. In a new study (Farron et al. 2022), we showed that the use of right versus left hand during the adaptation modulates the consecutive reshaping of the ventral attentional system. Depending on the patients’ conditions, using the right or the left hand during prism adaptation might potentiate the beneficial effects of this intervention.

- Our projects on stroke patients and cognitive rehabilitation are exploring new ways to treat attention deficits using a whole program of gamified activities based on virtual reality, including a new prism adaptation method. Our neuroimaging study (Wilf et al., 2021) showed that prism adaptation done in virtual-reality can change large-scale cortical connectivity, such information is crucial to target more precisely the use of this treatment in clinical population.

Research interests

Dr. Sonia Crottaz-Herbette is a Senior Lecturer and Privat-Docent at the Laboratory of Cognitive Science, Service of neuropsychology and neurorehabilitation (NPR). Her research interests include cognitive rehabilitation, acquired brain injury, and virtual reality. Her work focuses on neural plasticity and neuroimaging.

Affiliation

Service of neuropsychology and neurorehabilitation (NPR)

Keywords

- Cognitive rehabilitation
- Acquired brain injury
- Neural plasticity
- Neuroimaging
- Virtual reality
Main publications in 2021-2022

ORCID number:

S. Clarke: 0000-0001-9393-5718
S. Crottaz-Herbette: 0000-0003-3944-3952

CHUV
www.chuv.ch/crn-sciences-cognitives

UNIL
http://wp.unil.ch/lsc/en/

Unisciences
www.unil.ch/unisciences/soniacrottazherbette
Laboratory’s activity

NeuroRestore is a research, innovation and treatment center that develops and applies bioengineering strategies involving neurosurgical interventions to restore neurological functions.

The objectives of NeuroRestore are to integrate implantable neurotechnologies and innovative treatments resulting from rigorous preclinical studies that have been conducted during the last two decades in rodent and non-human primate models. These developments have led to breakthroughs for the treatment of paraplegia, tetraplegia, Parkinson’s disease, stroke, and traumatic brain injuries.
Research interests
NeuroRestore neurological functions, including the in-depth understanding of their mechanisms in preclinical models and implementation in humans.

Scientific contributions in 2021-2022
> Uncovering the neurons that restore walking in patients with spinal cord injury. We established a molecular atlas of the spinal cord that allows us to observe the evolution of the healing process.
> Development of a neuroprosthetic treatment to alleviate hemodynamic instability in a patient with multiple system atrophy.
> Understanding the principles of gait encoding in the subthalamic nucleus of patients with Parkinson’s disease to restore gait deficits in the future.

Main publications in 2021-2022

ORCID numbers:
G. Courtine: 0000-0002-5744-4142
J. Bloch: 0000-0002-6405-1590

https://www.neurorestore.swiss/
EPFL https://people.epfl.ch/gregoire.courtine?lang=en
Unisciences www.unil.ch/unisciences/jocelynebloch
Laboratory of Cellular and Molecular Neurotherapies
LNCM

Assoc. Professor Nicole Déglon, Head of laboratory
Privat-Docent Liliane Tenenbaum

Laboratory’s activity
The laboratory’s activities are focusing on the development and validation of innovative neurotherapies and neuromodulation strategies. The research programs are focusing on:
- Underlying molecular and environmental mechanisms in Huntington’s disease (HD).
- Pre-clinical development of molecular therapies for Huntington’s disease (HTT gene editing).
- Modulation of neuroinflammation and drug-inducible gene therapy of Parkinson’s disease.
Laboratory’s activity
We focus our research on the development of molecular therapies for neurodegenerative disorders and in particular polyglutamines disorders (polyQ). Huntington’s disease (HD) and the Spinocerebellar ataxia type 3 (SCA3) are the two most common polyQ diseases worldwide. They primarily affect the central nervous system, with the presence of a neuropathological accumulation of disease protein aggregates, largely in neurons. We have been exploiting the genetic origin of these pathologies to develop gene editing strategies as well as the unique features of various AAV serotypes to deliver therapeutic candidates in affected brain circuits.

Research interests
The group has a long-standing experience and expertise in viral gene transfer technology to deliver therapeutic candidates in the brain and in particular gene silencing or gene editing strategies for autosomal dominant disorders.

Scientific contributions in 2021-2022
> To better decipher the contributions of the various cell populations in the CNS, we have developed cell-type specific gene delivery platforms based on lentiviral (LV) and adeno-associated vectors (AAV). In two collaborative studies, astrocyte-specific vectors were used to investigate the role of lactate transporters in the barrel cortex and the contribution of mitochondrial biogenesis in astrocyte maturation and synapse formation.
> A second line of research aims at deciphering the mechanism of propagation of the Tau protein in the brain. In collaboration with Dr. Buee’s group, France, we have shown that brain-derived enriched extracellular vesicles contain pathological species that can induce tau damage in vivo.
Main publications in 2021-2022

Zehnder T, Petrelli F, Romanos J, De Oliveira Figueiredo EC, Lewis TL, Déglon N, Polleux F, Santello M, Bezzi P. Mitochondrial biogenesis in developing astrocytes regulates astrocyte matura-

ORCID number: 0000-0003-4475-9476

CHUV
https://www.chuv.ch/crn-lntm

UNIL
www.unil.ch/lcmn/home.html

Unisciences
www.unil.ch/unisciences/nicoledeglon

Visualization of the green fluorescent protein in the cerebellum of the mouse brain.

Laboratory’s activity
Current treatments for Parkinson’s disease are symptomatic. Neurotrophic factors could halt disease progression. AAV vectors deliver GDNF in the brain, protecting dopaminergic neurons and reducing motor symptoms. However, long-term or off-target delivery induce side effects. Currently used AAVs i) do not allow to adjust the dose and period of treatment; ii) express GDNF into all types of neurons, mainly projection neurons. In contrast, endogenous GDNF is expressed by interneurons. We are developing inducible and targeted AAVs in order to optimize neuroprotective gene therapy.

Research interests
Neuroprotective gene therapy for Parkinson’s disease
> Mechanism of GDNF neuroprotective effects in vivo.
> Drug-inducible and targeted AAV vectors.
Brain inflammatory responses
> Modulators of neuroinflammatory signalling.

Scientific contributions in 2021-2022
> We have targeted AAV-mediated transgene expression in striatal parvalbumin-expressing (PV⁺) interneurons using genetic tools (PV-cre driver mice) with a high efficiency and specificity.
> We have demonstrated that PV-cre mice are however not an adequate tool to study neuroprotective paradigms since the expression of CRE protein induces a decrease of the number of PV⁺ interneurons.
> We are developing novel AAV tools to target striatal interneurons.

Keywords
Parkinson’s disease Targeted viral vectors Neuroinflammation
Neuroprotection Gene transfer GDNF
Main publications in 2021-2022

ORCID number: 0000-0003-4619-9660

CHUV
https://www.chuv.ch/crn-lntm

UNIL

Unisciences
www.unil.ch/unisciences/lilianetenbaum
Laboratory of Acute Neurorehabilitation - LNRA

Senior Lecturer Karin Diserens
Senior staff member
Head of the Laboratory of Acute Neurorehabilitation - LNRA
Laboratoire de recherche en neurorééducation aiguë
karin.diserens@chuv.ch

Keywords
Coma
Disorders of Consciousness (DOC)
Cognitive Motor Dissociation (CMD)

Prognosis
Acute neurorehabilitation
Neurosensory approach
Brain Computer Interface
PeriPersonal Space

Robotic neurovegetative disorders
Virtual reality
Spasticity
Early mobilization

Laboratory’s activity
> To present a new approach to classification of unresponsive patients.
> To provide accurate identification of Clinical Cognitive Motor Dissociation (cCMD) among Disorders of Consciousness (DOC) in the acute phase by means of the refinement of the clinical diagnosis.
> To investigate the functional/cognitive recovery in patients with cCMD.
> To implement an EEG motor imagery paradigm coupled with functional electrical stimulation, and an EEG task-free paradigm to differentiate patients evidencing intention without being able to implement it.
> To characterize the diagnostic and prognostic value of PET and MRI imaging patterns in the acute stage in terms of identification of strong biomarkers of covert awareness.

Scientific contributions in 2021-2022
> Clinical diagnostic refinement of DOC/CMD in the acute phase.
> Detangling the percepts of illusory movement and sensory stimulation during tendon vibration in the EEG.
> Description of the early neurorehabilitation care pathway during COVID-19.
> Description of a new MRI-based score assessing brain damage and accurately detecting patients with residual consciousness.
> Demonstration of embodied mirror visual feedback during movement preparation and execution.

Research interests
Overall our research aims to develop a coordinated multimodal approach involving several experts, integrating information from complementary sources to increase detection accuracy of covert awareness/Cognitive Motor Dissociation among Disorders of Consciousness in the acute stage, to inform better the decision-making process and prognosis and to improve early therapeutic interventions for severely neurolesioned patients.
Main publications in 2021-2022

ORCID number: 0000-0002-3000-7794

CHUV

www.chuv.ch/crn-lnra

Unisciences

www.unil.ch/unisciences/karindiserens
Laboratory for Research in Neuroimaging - LREN

Assoc. Professor Bogdan Draganski, Head of laboratory
Senior Lecturer Ferath Kherif
Senior Lecturer Marzia De Lucia
Assist. Professor Antoine Lutti
Dr Ann-Marie de Lange

Laboratory’s activity
LREN is an imaging neuroscience laboratory dedicated to the study of brain structure and function relevant to the endogenous and environmental effects on human behaviour and cognition across the lifespan. We develop and apply non-invasive neuroimaging methods - magnetic resonance imaging and electro-encephalography - that help advancing our knowledge in brain health maintenance, early diagnosis of neurodegeneration and mechanisms governing brain plasticity. Our research has a specific focus on sex and gender differences.

LREN is responsible for a state-of-the-art neuroimaging platform featuring high-end research-only Siemens Prisma 3T MRI scanner, sophisticated MRI compatible neurophysiological equipment and high-density EEG machines.

LREN’s main goal is to translate research findings into clinical applications for prevention, early diagnosis of disease and for prediction of clinical outcome. We provide the neuroimaging expertise and infrastructure for large-scale initiatives supported by the Swiss National Science Foundation and the Swiss Academy of Medical Sciences – the longitudinal CoLaus|PsyCoLaus and the SPHN SACR cohorts.

LREN’s research is supported by competitive national (SNSF, SAMS, InnoSuisse, Bertarelli) and EU grants additionally to generous funding from the charitable Roger De Spoelberch and Partridge foundations.
Research interests
One of my main research directions is the investigation of inter-individual heterogeneity of brain health outcomes in a lifespan perspective additionally to probing the brain plasticity potential of electro-convulsive therapy. Our most recent developments in quantitative MRI mapping of brain microstructure properties combined with sophisticated multivariate classification techniques and bio-physical modelling strengthen this research direction.

Scientific contributions in 2021-2022
Intramural funding
> CRN seed grant for effects of “long COVID” on the brain.
> CLIMACT UNIL-EPFL on the impact of climate change on brain and behaviour.
Funding obtained from the Swiss National Science Foundation
> Personal project grant on the neuroplasticity effects of electro-convulsive therapy for major depression.
> Co-applicant of Synergia grant on the genetic basis of micro- and macro-vascular anatomy (Coordinator Pr Sven Bergmann CIG UNIL).
> Co-applicant of InnoSuisse grant HeadFirst on the mechanisms of head trauma and associated behavioural effects.
> EU Funding - ERA-NET Neuron on prosthesis for visually impaired individuals (together with McGill - Canada, University Bremen - Germany, EPFL).

Main publications in 2021-2022

ORCID number: 0000-0002-5159-5919

CHUV
www.chuv.ch/crn-lren

UNIL
www.unil.ch/lren

Unisciences
www.unil.ch/unisciences/bogdandraganski
Laboratory’s activity
Neuroscience’s contribution to people’s quality of life extends beyond traditional approaches like neurology and psychiatry, and is a fundamental question. Our goal is to develop new Multivariate methods for understanding how the human brain works, how it interacts with the environment, how the function of the brain relates to its anatomy and development over time, as well as how it is altered in disease. Our research focuses on topics such as language, memory, and individual differences in dementia and mental illness using mathematical formalisms, statistical models, and deep neural networks.

Research interests
Modelling and identifying dynamic neuroclinical signatures in language, memory and learning in health and disease using multivariate models and large-scale data. Incorporating informatics into a theoretical framework for mapping structure and function.

Scientific contributions in 2021-2022
As a result of our research, large amounts of data (hospital data, databases, medical informatics platform MIP, etc.) can be federated to identify biological signatures of diseases in the brain (imaging, tissue and blood samples, clinical records, medical history, genomics, etc.).
> Benchmark deep learning systems against multivariate predictive models and more traditional techniques.
> By disseminating our open source code and testing implementations in clinical settings, we contribute to the diffusion of these innovations.
Main publications in 2021-2022

ORCID number: 0000-0001-5698-0413

CHUV
www.chuv.ch/crn-lren

UNIL
www.unil.ch/lren

Unisciences
www.unil.ch/unisciences/ferathkherif
Laboratory’s activity
Loss of consciousness involves dramatic changes in neural activity and is accompanied by a drastic reduction in the responsiveness to sensory stimuli. My research work aims at shedding light on common principles underlying preserved brain responses to sensory stimuli across different varieties of unconscious states including coma and deep sleep. This knowledge informs the development of quantitative markers revealing covert consciousness in unresponsive patients. We acquire data through intracranial and scalp electrophysiological recordings, diffusion tensor and magnetic resonance imaging. We employ machine learning techniques, network analysis and signal processing methods for combining functional and structural data.

Research interests
> Coma
> Disorders of consciousness
> Statistical regularities
> Interoception.

Scientific contributions in 2021-2022
> Implementation of a novel experimental and methodological framework for studying the cardiac and neural correlates of cardio-audio regularities during sleep in humans.
> Implementation of a novel experimental and methodological framework for measuring the interemispheric transfer time in humans.
> Identification of a new marker for measuring preserved cardio-audio regularity processing in humans, during wakefulness, sleep and coma.
> MDL is PI of the project “The impact of heartbeat signals on auditory regularity processing in humans” funded by the Swiss National Science Foundation.
> MDL is PI of the project “Neural responses to cardio-audio sequences as a marker of consciousness in health and disease” funded by the Bertarelli Catalyst Foundation in collaboration with Prof. Sophie Schwartz of the University of Geneva.
> MDL is awarded the platform grant for the project “The installation of a new shared facility for EEG-based research” from the Center of Research in Neuroscience, Lausanne University Hospital.
> MDL receives support from the Center for Open Science and Templeton World Charity for her project “Encoding of global auditory regularities in unconscious states”.

Keyword
Electrophysiology
Consciousness
Main publications in 2021-2022

ORCID number: 0000-0001-8792-7885

CHUV www.chuv.ch/crn-lren

Unisciences www.unil.ch/unisciences/marziadelucia

https://sites.google.com/view/marziadelucia/home
Laboratory’s activity
Magnetic Resonance Imaging (MRI) is a technology of primary importance to study brain disease \textit{in vivo} in patient populations. However, many disease-related changes take place at the microscopic scale within the brain and cannot be detected with standard MRI techniques. Our group focuses on the development of quantitative MRI (qMRI) technologies that provide measures of microscopic brain tissue properties \textit{from in vivo data (“in vivo histology”)} and improve the monitoring of disease evolution in patient populations.

Research interests
- MRI techniques for neuroscience
- Motion correction
- Biophysical modelling of the MRI signal
- MRI biomarkers of brain tissue.

Scientific contributions in 2021-2022
- PI of the SNF project “Advanced quantitative MRI biomarkers of Parkinson’s Disease - towards \textit{in vivo} histology”.
- PI of the CRN platform project “On-site manufacturing of tooth clips for the correction of patient motion in the MRI scanner”.
- Technical supervision of the MRI platform of the Department for Clinical Neuroscience - CHUV.
- MRI platform of the DNC-CHUV achieved the examination of its 6000th research participant.

Keywords
- MRI physics
- Quantitative MRI
- In vivo histology
- Imaging neuroscience

Assist. Professor Antoine Lutti
Group leader
Laboratory for Research in Neuroimaging - LREN
Laboratoire de recherche en neuro-imagerie - LREN
antoine.lutti@chuv.ch
Our group focuses on the development of MRI technologies that allow the measurement of microscopic properties of the brain from data acquired in vivo in patients (“in vivo histology”).

Main publications in 2021-2022

ORCID number: 0000-0003-3281-5477

CHUV
www.chuv.ch/crn-lren

UNIL
www.unil.ch/lren

Unisciences
www.unil.ch/unisciences/antoinelutti

https://sites.google.com/view/antoinelutti/home

Taken from Neuroanatomy, Motor Neuron by Zayia LC & Tadi P, StatPearls Publishing
Women are at greater risk of developing Alzheimer’s disease relative to men, and have higher prevalence of autoimmune diseases and depression. As women’s health is historically understudied, little is known about mechanisms underlying epidemiological sex differences in disease, and how factors such as sex-hormones influence brain health across the female lifespan.

FemiLab aims to increase the understanding of transitional life phases including puberty, pregnancy, and menopause, and how biological and psychosocial factors related to these events influence brain health. To investigate this, we analyse brain imaging, clinical, genetic, biological, and psychosocial data from large population-based studies.

Research interests
> Menopause and brain ageing
> Cardiometabolic health and lifestyle
> Brain plasticity in pregnancy
> Mental health and depression
> Sex-hormones and neuroendocrinology.

Scientific contributions in 2021-2022
> PI of “FemiLab: Women’s Brain Health Across the Lifespan” (SNSF Ambizione).
> >20 papers published as main author/co-author, including pioneering studies on relationships between structural brain integrity, cardiometabolic risk, and sex-hormone exposure.
> Authored/co-authored multiple methods papers on Machine Learning for neuroimaging data (e.g., Leonardsen et al. 2022, de Lange et al. 2021, Beck et al. 2021).
> ~10 invited scientific talks across Europe and abroad.
> Science communication activities including media interviews, podcast, and TV appearance in the BBC documentary film “A Mother’s Brain”.
> Co-lead of Women’s NeuroNetwork, organising events for women in neuroscience.
Research addressing women’s health is not only necessary to obtain a more complete understanding of brain ageing and disease, but also to approach gender equity in health care. By combining large datasets including neuroimaging and genetic data, FemiLab aims to identify factors that influence women’s brain health across the lifespan - including risk factors for neurodegeneration and mental health problems.

Main publications in 2021-2022

ORCID number: 0000-0002-5150-6656

UNIL
www.unil.ch/lren
https://www.unil.ch/lren/home/menuinst/lreners/ann-marie-de-lange.html

FemiLab
https://www.femi-lab.com/

Women’s NeuroNetwork
https://www.womensneuronet.com/
Laboratories of Neuroimmunology

Laboratory of Neuroimmunology/Multiple Sclerosis - LNIS
Professor Renaud Du Pasquier, Head of laboratory

Laboratory of Experimental Neuroimmunology - LNIE
Assoc. Professor Caroline Pot Kreis, Head of laboratory

Laboratory's activity
Multiple sclerosis (MS) is an auto-inflammatory disease of the central nervous system, where all components of the immune system, innate and adaptive, are involved. In addition to genetic factors, environmental ones play a crucial role in triggering this complex disease. In the Laboratories of neuroimmunology, we examine how environmental factors, among which Epstein-Barr virus, gut microbiome or cholesterol metabolites support autoreactivity of B and T cells. To tackle our hypothesis, we use different approaches, including animal models, namely the experimental autoimmune encephalomyelitis, human samples analysis (blood, cerebrospinal fluid, urine, stool) of MS patients and a human in vitro model of MS brain, using induced pluripotent stem cells (iPSC).
Laboratory's activity
Primarily devoted to research in Multiple Sclerosis (MS), our Laboratory studies the interaction between the immune response - with a focus on CD8+ T cells - and environmental factors. In particular, we have investigated the mechanism by which Epstein-Barr virus (EBV) might be implicated in the pathogenesis of MS. We have found that EBV-specific CD8+ T cells are dysregulated in the blood and the cerebrospinal fluid (CSF) of MS patients. In order to examine whether EBV-specific CD8+ T cells would cross-react with central nervous system (CNS) cells, we have established a program of human induced pluripotent stem cells (hiPSC). We have thus set up an in vitro human model allowing to study in a fully autologous way the interaction between peripheral immune cells and CNS cells. Thanks to this potent tool, several opportunities opened to us and are leading to fruitful collaborations. We also have a long-standing interest in the immunopathogenesis of progressive multifocal leukoencephalopathy (PML), a disease mediated by the polyomavirus JC (JCV). Our hiPSC model allows to elucidate how JCV spreads from one CNS cell to the other.

Research interests
The research of Prof. Renaud Du Pasquier is driven by the willingness to better understand the pathogenesis of inflammation in the brain, in particular in the field of multiple sclerosis. Only such an understanding will lead to breakthrough treatments.

Scientific contributions in 2021-2022

Selected invited lectures:
> Immunology and virology, Hot topic: COVID-19 and MS, ECTRIMS, Vienna, October 21 2021.
> Opportunistic infections under disease-modifying therapies - Educational session 6, Infections and MS, ECTRIMS, Vienna, October 14 2021.
Main publications in 2021-2022

ORCID number: 0000-0002-2786-3434

CHUV
www.chuv.ch/crn-neuroimmunologie

Unisciences
www.unil.ch/unisciences/renauddupasquier

Differentiation of CNS cells from human iPSCs.
10 ml of blood was drawn from a patient with multiple sclerosis. Erythroblasts were isolated, then reprogrammed into human induced pluripotent stem cells (hiPSCs) (A), and finally differentiated into CNS cells, including neurons (B), oligodendrocytes (C), and astrocytes (D, E).
Laboratory of Experimental Neuroimmunology - LNIE

Assoc. Professor Caroline Pot, MD
Group leader, consultant neurology

Head of the Laboratory of Experimental Neuroimmunology - LNIE
Laboratoire de neuroimmunologie expérimentale - LNIE
caroline.pot-kreis@chuv.ch

Affiliation
Service of neurology (NLG)
Service of immunology and allergy (LIA)

Keywords
Neuroimmunology
Experimental autoimmune encephalomyelitis
Multiple sclerosis
Immunometabolism
Lipidic pathways
Gut-brain axis

Laboratory’s activity
Multiple sclerosis (MS) is an autoimmune disorder affecting young patients. MS and its animal model, the experimental autoimmune encephalomyelitis (EAE), are characterized by inflammatory cell infiltrates and demyelination of the central nervous system. While risk factors such as viral infections and smoking are established, the role of cholesterol metabolism, mucosal immunology and nutrition remains unclear.

In our laboratory, we study the role of the gut-brain axis and lipid metabolism during neuroinflammation. We propose that the gut is a reservoir for immune cells and showed that blocking encephalitogenic T cell entry into the gut dampens EAE. Furthermore, perturbation of steroids pathways promote inflammation. We show that oxysterols, oxidized forms of cholesterol, shape the immune responses during inflammatory diseases including colitis and MS. However the sole hypercholesterolemia is not sufficient to promote EAE and lowering cholesterol levels with PCSK9-inhibitors does not modify EAE disease course. We finally translate our murine results to human MS research and conduct translational studies to understand how nutrition and gut flora as well as lipid metabolism affect MS.

Research interests
The aims of Caroline Pot’s research is to fine-tune immune responses in regards to environmental factors or metabolic pathways. This could lead to novel therapeutics and contribute to scientific re-evaluations of life-changes thus promoting personalized medical approaches for MS patients.

Scientific contributions in 2021-2022

> October 26-28th 2022, 38th European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS). Location: Amsterdam, The Netherlands. Poster presentations.
> June 25-28th 2022, 8th Hybrid Congress of the European Academy of Neurology (EAN), Vienna, Austria. Posters and oral invited presentation.
Main publications in 2021-2022

ORCID number: 0000-0002-1146-3129

Unisciences www.unil.ch/unisciences/carolinepot
Laboratory’s activity
Taking advantage of the clinical setting of the laboratory, we aim at integrating clinical and basic cancer research in neuro-oncology at the CHUV. Joint efforts integrating research databases, including the brain tumor bank, foster research collaborations and have yielded collaborative translational research projects. We investigate mechanisms of treatment resistance and use perturbation studies to uncover the “achilles heel” of the tumors in order to identify novel promising treatment combinations. Multidimensional OMICs datasets of clinically well defined glioma datasets have yielded predictive factors and potential new targets that we are further investigating in the laboratory. We aim at bridging this knowledge with the new opportunities that will open with the new “Lucas Lundin Center for Research in Neuro-Oncology” headed by PD Dr Andreas Hottinger, for improvement of patient management and development of future studies and trials.
Research interests

- (Epi)genomics of glioma, their relevance for tumor biology, classification, and novel therapeutic strategies.
- Molecular mechanisms and biomarkers of resistance.
- Translational research.
- Longitudinal modeling of tumor invasion using spectroscopy.

Scientific contributions in 2021-2022

- GBM of elderly patients are not molecularly different from other age groups, falling into the same subtypes (RTK I & II, MES), advocating for similar treatments if frailty and co-morbidities permit.
- Age acceleration of GBM (epigenetic age minus chronologic age of the patient, Horvath clock) was revealed as integrative part explaining methylation-based classification of GBM.
- Contributions to investigations of the tumor microenvironment of primary brain tumors and brain metastasis revealed disease-specific differences.
- Perturbation studies in GBM derived spheres uncovered pathway vulnerabilities targetable with mechanistically informed combination therapies.
- Metabolic and transcriptional profiles of glioblastoma invasion characterized by 1H Magnetic Resonance Spectroscopy (7T/14T) of patients' tumors and corresponding orthotopic mouse xenografts provided insights into underlying pathways and revealing similarities.

Affiliations

- Service of neurosurgery (NCH)
 Swiss Cancer Center Léman (SCCL)

Keywords

- Brain tumors
- Tumor genetics and epigenetics
- Translational research
- Predictive biomarkers
- PDX-mouse models
- High resolution magnetic resonance spectroscopy
Main publications in 2021-2022

ORCID number: 0000-0003-0855-6495

CHUV
www.chuv.ch/crn-lbgt

Unisciences
www.unil.ch/unisciences/monikahegi

HTATIP2 retains the DNA repair protein MGP in the cytoplasm reducing repair of therapy induced DNA damage.
Laboratory’s activity
Primary brain tumors
We focus on the development of novel and innovative treatment strategies for patients with primary brain tumors including glioblastoma, astrocytomas, oligodendrogliomas and other rare forms of cancers of the nervous system.

Neurologic complications of cancer and cancer therapies
Our group has gained an expertise in the management of neurological complications of novel oncologic immune therapies including checkpoint inhibitors.

Translational research
A first area of focus is the development and evaluation of xenograft models of glioblastoma - collaboration work with the laboratory of brain tumor biology and genetics (LBGT) and the Center of Biomedical Imaging (CIBM, CHUV).
In a collaboration with the Laboratory for Research in Neuroimaging (LREN) we are also interested in better characterizing the modifications induced by glioblastoma and treatment with alternating electrical fields on the brain parenchyma.

Research interests
Our group has a long-standing experience and expertise in clinical trials. We are involved in a number of international clinical trials with several organizations, including the Swiss Neurooncology Society, the European Organization for Research and Treatment of Cancer (EORTC) as well as a number of pharmacological companies.

Scientific contributions in 2021-2022
> Collaboration with the laboratory of biology and genetics of brain tumors and the Center for biomedicine imaging to evaluate patient-derived xenograft models of glioblastoma.
> Evaluation of the effects of tumor treating fields in patients with newly diagnosed GBM.
> Participated in several international treatment guidelines for gliomas and primary CNS lymphoma.
> During 2022 and 2023, thanks to an important donation, we will set up the Lundin Family Brain Tumor research center with the aim to boost translational and clinical research on brain tumors with the aim to improve the outcome and quality of life of patients with brain tumors.
Main publications in 2021-2022

ORCID number: 0000-0001-7098-9414

Unisciences
www.unil.ch/unisciences/andreashottinger

Brain FET-PET showing a high grade glioma in the left frontal lobe.
The Stroke Research branch in the CRN has a wide fundamental research activity including neuroprotection, neuroradiological analyses, and clinical stroke research. It is well known that experimental lab and clinical registries contribute to the understanding of stroke mechanisms as well as to the advancement of acute and chronic treatment of stroke victims. Both the Stroke Laboratory and the Clinical Stroke Research teams are well connected through local, national and international collaborations and welcome international researchers.
Laboratory's activity
The stroke laboratory is studying mechanisms of cell death after cerebral ischemia using an experimental model (mouse middle cerebral artery occlusion, MCAO). We are studying lactate as an agent for repair and protection as well as its neuroprotective mechanisms involving its receptor and transporters. We have shown that the mode of action lactate in vivo is predominantly metabolic, as receptor agonists failed to induce protection and as lack of receptor did not lead to enhanced susceptibility to stroke in receptor deficient mice. In an SNF-funded project analysing hyperpolarized substrate administration after MCAO by magnetic resonance spectroscopy, we have shown a rapid metabolism in the ischemic brain of both 13C-lactate and 13C-pyruvate. These preclinical results led us to initiate a clinical trial in acute stroke patients testing lactate against placebo (10 patients included so far). Lab members are Lara Buscemi, PhD; Melanie Price, PhD and Julia Castillo Gonzalez, MSc.

Scientific contributions in 2021-2022
We have shown that:
> HCAR1 is not involved in the beneficial effect of lactate after MCAO.
> The free radical TEMPOL used in DNP influences the MRS data after MCAO in mice.
> Diabetes influences the hemodynamic and arterial wall parameters in acute ischemic stroke patients.
> Low echogenicity at the surface of carotid plaques is associated with increased stroke risk.
> We have obtained new FNS and ERA-NET neuron grants for the next period.

Research interests
Our research aims at finding additional options to improve the outcome of stroke patients. Experimentally, we are investigating the neurovascular unit, neuroinflammation, angiogenesis and metabolism after stroke. We are running a double blind randomised controlled clinical trial on lactate administration in ischemic stroke patients, thereby translating our project on lactate from bench to bedside, in collaboration with the clinical stroke research team of Pr. Patrik Michel. In clinical research, we are also exploring our large retrospective Doppler US database.
Main publications in 2021-2022

ORCID number: 0000-0002-2921-5000

CHUV
www.chuv.ch/fr/neurologie/nlg-home/le-service-en-bref/notre-equipe/equipe-medicale/pr-lorenz-hirt

UNIL
wwwfbm.unil.ch/dnf/group/lorenz-hirt/member/hirt-lorenz-hirt

Unisciences
www.unil.ch/unisciences/lorenzhirt

The image illustrates the attempt of brain cells to repair the damage caused by experimental ischemia. It shows cell proliferation (ki67, magenta) occurring in and around a blood vessel (collagen IV, brown) in the lesion area, which is enveloped by pericytes (PDGFrβ1, cyan), three days after surgery. Cell nuclei are shown in gray.
Laboratory of Clinical Stroke Research Unit

Assoc. Professor Patrik Michel
Head of Unit

Head of the Laboratory of Clinical Stroke Research Unit
Laboratoire de l’unité de recherche cérébrovasculaire clinique
patrik.michel@chuv.ch

Affiliation
Service of neurology (NLG)

Keywords
Stroke
Thrombolysis
Neuroimaging
ASTRAL registry

Scientific contributions in 2021-2022

- Participation in several randomized clinical trials (BASICS, SWIFT-DIRECT, ESTREL, ELAN, DISTAL and others).
- 56 peer-reviewed publications.
- Grant from UNIL as main applicant. Grants from Swiss Heart Foundation as main and as co-applicant.
- One MD thesis terminated, two ongoing. One PhD thesis terminated (co-supervisor), two ongoing (one as co-supervisor).
- Organiser, speaker and chairman of multiple national and international conferences.
- Multiple collaborations nationally (Swiss Stroke Registry) and internationally (TRISP/EVATRISP; Prof. M. Wintermark, Houston; Dr P. Seners, Stanford; Prof. Th. Nguyen, Boston; and others).

Laboratory’s activity

The Clinical Stroke Research team maintains since 2003 the ASTRAL registry (Acute STroke Registry and Analysis of Lausanne). It contains >7’000 acute stroke patients, each with >300 variables including demographic, clinical, comorbidity, multimodal imaging, etiological, metabolic and outcome data. CT and more recently MRI-based angiographic and perfusion data are collected and analysed in a detailed manner. We also study the influence of acute revascularization treatments in different situations, frequent and rare stroke mechanisms, and prognostic markers of long-term outcome. The team participates in multiple national and international randomized trials for acute stroke treatment and secondary prevention.

Research interests

Our team’s research interests concern clinical stroke syndromes, acute stroke imaging, acute stroke management and stroke prognosis, and secondary stroke prevention. Beside participation in multiple randomized trials, we recently published on stroke syndromes and causes (posterior circulation stroke/basilar artery occlusion, COVID-19 and stroke, PFO-related stroke, rare stroke mechanisms), acute imaging of ischemic stroke (perfusion imaging, collaterals, posterior circulation), acute revascularization treatments (effect of thrombolysis and thrombectomy in different situations, complications of thrombectomy), stroke management (Stroke-unit strokes; palliative predictors) and secondary stroke prevention (PFO-closure).
Main publications in 2021-2022

ORCID number: 0000-0003-4954-7579

CHUV

www.chuv.ch/fr/neurologie/nlg-home/patients-et-familles/nos-unites/centre-cerebrovasculaire

Unisciences

www.unil.ch/unisciences/patrikmichel

Focal hypoperfusion in the left hemisphere on perfusion-CT analysis in a patient with migrainous aura (upper panels) and in a patient with a TIA (lower panels).

Left: regions of interest
Right: time-to-peak perfusion-CT.
Laboratory of Clinical Neurosurgery Research

Assoc. Professor Roy Thomas Daniel, Head of laboratory
Senior Lecturer, Privat-Docent Mahmoud Messerer
Senior Lecturer Daniele Starnoni
Senior Lecturer Giulia Cossu
Dr Lorenzo Giammattei

The Neurosurgery Education and Training laboratory (NET-lab) activities explore new surgical approaches. Our theme is “From the Lab to the OR” as a reflection of a true translational effort to introduce novel anatomical concepts and innovative surgical technique into real surgical practice.

Laboratory’s activity
The laboratory research is based on cohort studies (institutional or multicentric) with a view to improve neurological outcomes following surgery. This led to publication of several European guidelines on behalf of the European Association of Neurosurgical Societies for treatment of complex skull base pathologies. The Neurosurgery Education and Training laboratory (NET-lab) activities explore new surgical approaches in order to limit neurological morbidity. We also pioneered the strategy of combined surgery with radiosurgery and implemented combined endoscopic and open surgical approaches for complex skull base pathologies. The lab contributes data to the Swiss SOS registry on aneurysmal subarachnoid hemorrhage allowing several multicentric cohort studies on epidemiology and treatment outcomes. The clinical and NET lab research studies is also focused on new surgical strategies for disconnectional epilepsy surgery. Surgical strategies for pituitary tumors that favor endocrine functional preservation are explored through combination of large cohort studies, newer surgical approaches and molecular markers analysis. New paradigms for the treatment of severe brain trauma have also been developed with promising outcomes that have challenged traditional concepts of treatment care.
Research interests
The primary focus of this team centers on the tumors and vascular lesions of the brain. The lab focuses on innovative surgical strategies that combine surgical (endoscopic and open) and radiosurgical treatment. We also focus on comparing outcomes of surgical and interventional neuroradiological procedures for the aneurysm treatment especially in relation to DCI and its treatment.

Scientific contributions in 2021-2022
- Progress in research and clinical trials leading to 40 peer-reviewed publications.
- One Brihaye EANS research grant.
- Two MD obtained and a PhD.
- Participation in 2 national/international randomized clinical trials.
- Organiser, speaker and chairman of multiple national and international conferences.
- Multiple collaborations nationally and internationally (Swiss SOS registry, EANS, WFNS).
We explored and described the technique of tentorial peeling during combined petrosal approach. This technique has the potential to reduce the morbidity associated with temporal lobe retraction and venous injury.

Main publications in 2021-2022
Harel E, Cossu G, Daniel RT, Messerer M. Relationship with the diaphragm to predict the surgical outcome in large and giant pituitary adenomas. Front Surg. 2022 Sep 1; 9:962709. eCollection 2022.

ORCID number: 0000-0003-4975-8237

CHUV
https://www.chuv.ch/en/neurochirurgie/nch-home/formatation/laboratoire-de-dissection-net-lab

Unisciences
https://www.unil.ch/unisciences/nch
Laboratory’s activity
Our laboratory’s activities are focusing on clinical research in patients with epilepsy, migraine or disorders of consciousness, including status-epilepticus and post-anoxic coma.
In epilepsy, we pursue five main research objectives:
> Pathophysiology and prevention of Sudden Unexpected Death in Epilepsy Patients.
> Seizure detection in ambulatory patients using mobile health technology.
> Point-of-care testing of antiepileptic drugs plasma dosage.
> Pharmacogenomic and other biological biomarkers.
> Epidemiology and management of status-epilepticus.

In disorders of consciousness, our current research primarily focuses on outcome prognostication of acute coma, particularly after cardiac arrest.
In migraine, our current research focuses on the detection of neurovegetative biomarkers that would precede or accompany migraine attacks, using wrist-worn wearable devices.
We are also coordinating the development of the Medical Informatics Platform (MIP) and the Human Intracerebral EEG Platform (HIP) of the Human Brain Project. The MIP offers a unique solution for performing federated analyses of datasets distributed across hospitals. The HIP provides the scientific community access to the largest and most advanced solution worldwide for storing, curating, sharing, and analyzing data directly recorded from the Human brain during SEEG in patients with epilepsy.
Research interests
Biomarkers and prevention of SUDEP, seizure detection, large scale data sharing.

Scientific contributions in 2021-2022
> Clinical partner for the Neurosense Horizon Project (NEUROendocrine SENSor for sudden unexpected death in Epilepsy prediction and prevention).
- Development of methodology within our platform.
- Brainstem fMRI in breath-holding in patients with epilepsy vs controls (1st study).
> Advancing the deployment and usage of the HBP funded Medical Informatics Platform (MIP) with use-cases in TBI, mental health, dementia, stroke and epilepsy.
> Developing the HBP-funded Human intracerebral EEG platform (HIP) with 10 centers performing closed beta testing of the platform.
Main publications in 2021-2022

Ciumas C, Rheims S, Ryvlin P. fMRI studies evaluating central respiratory control in humans. Front Neural Circuits 2022 Sep 23; 16:982963. (IF 3.5)

ORCID number: 0000-0001-7775-6576

CHUV
www.chuv.ch/crn-itec

Unisciences
www.unil.ch/unisciences/philipperyvlin
Laboratory of Cortical Excitability and Arousal Disorders - LE2C

Assoc. Professor Andrea Rossetti
Consultant/attending physician

Laboratory of Cortical Excitability and Arousal Disorders - LE2C
Laboratoire des troubles de l’excitabilité et de l’éveil cortical
andrea.rossetti@chuv.ch

Affiliation
Service of neurology (NLG)

Keywords
Epilepsy
Status epilepticus
Coma prognostication
EEG
Evoked potentials

Main publications in 2021-2022

Unisciences
www.unil.ch/unisciences/andrearossetti
Laboratory of Cortical Excitability and Arousal Disorders - LE²C

Senior Lecturer, Privat-Docent Jan Novy
Consultant/attending physician

Laboratory of Cortical Excitability and Arousal Disorders - LE²C
Laboratoire des troubles de l’excitabilité et de l’éveil cortical
jan.novy@chuv.ch

Affiliation
Service of neurology (NLG)

Keywords
Epilepsy
Sudden unexpected death in epilepsy
Neuroimaging
Intracerebral EEG
Seizure detection
Neurotechnologies
Pharmacology
Epidemiology
Biomarkers
Genetic

Laboratory’s activity
Assess the ways to improve the pharmacological treatment of epilepsy and identify biomarkers of the disease to guide the therapy. Establish a closed-loop therapy assessing on the one hand the treatment exposure and on the other hand markers of the disease activity. This closed loop therapy will allow a more efficient proactive rather than reactive treatment of epilepsy.

Research interests
Therapeutic monitoring and biomarkers of epileptic seizures.

Scientific contributions in 2021-2022
> Correlation between efficacy and medications plasma levels.
> Setting medications levels associated with need to switch medication.
> Assessing the use of therapeutic drug monitoring at treatment failure.
> Assessing drug load effects in term of adverse events.

Main publications in 2021-2022

ORCID number: 0000-0002-6862-7083

Unisciences
www.unil.ch/unisciences/jannovy
Laboratory MySpace

Assist. Professor Andrea Serino
Head of laboratory

Head of the Laboratory MySpace
Laboratoire MySpace
andrea.serino@chuv.ch

Laboratory’s activity
The main goal of the lab is understanding how the human brain builds a representation of the body in space, important for action, perception and consciousness. To this aim, we use different techniques from cognitive neuroscience, including psychophysics, fMRI, intracranial and scalp EEG recording, neuropsychology and neural network modeling to study the multisensory mechanisms underlying Body Representations (BR) and Peripersonal Space (PPS) in the human brain. This knowledge is applied to develop novel neurotechnology-based approaches, using e.g., virtual reality, robotics and brain machine interfaces, to study and help patients suffering physical (e.g., amputees) or neurological (e.g., stroke) impairments.

Research interests
Thanks to his multidisciplinary group, Andrea Serino carries out research to unravel the neural and cognitive basis of body and self experience in space. MySpace Lab’s approach combines basic research, translational work and novel neurotechnology solutions.

Scientific contributions in 2021-2022
> Discovering a novel form of interaction between the brain and the immune system, leading to the concept of Cognitive Immunity - funded by a SNSF Sinergia project.
> Investigating the neural bases of the sense of agency for brain machine interfaces.
> Validating novel combined clinical, computational and imaging tools to study body and space representations in healthy individuals, brain damaged and amputee patients.
> Describing a neurophysiological marker of multisensory integration within the Peripersonal Space (PPS) and assessing it during development (newborns), alterations (sleep and dreams) and disorders of (self-)consciousness.
> Developing, testing and implementing together in collaboration with neurotechnology companies, novel solutions for neurorehabilitation, leading to projects funded by innovation funds, such as the flagship Innovsuisse Project SwissNeuroRehab.
Main publications in 2021-2022

ORCID number: 0000-0001-7475-6095

CHUV
www.chuv.ch/crn-myspace

UNIL
https://wp.unil.ch/myspacelab/

Unisciences
www.unil.ch/unisciences/andreaserino
Laboratory of Nerve-Muscle Unit - NMUL

Senior Lecturer Marie Théaudin
Neurologist
Head of the Laboratory of Nerve-Muscle Unit - NMUL
Laboratoire de l’unité nerf-muscle - LUNM
marie.theaudin@chuv.ch

Affiliation
Service of neurology (NLG)

Keywords
Peripheral neuropathy
Hereditary amyloidosis

Neuroimmunology
Multiple sclerosis

Laboratory’s activity
The Lab is specialized in studying characteristics of patients with hATTR amyloidosis, including MRI nerve studies and small nerve fiber quantification in the cornea. Other activities include studying gene expression from skin in inflammatory nerve or degenerative disorders.

Research interests
The research of Dr Marie Théaudin has 2 centers of interest:
> To describe characteristics of the Swiss hATTR patients and identify biomarkers of disease progression.
> To identify imaging biomarkers in multiple sclerosis and describe response to treatment in this disease.

Scientific contributions in 2021-2022
> Value of sNLF dosage in the follow-up of hATTR patients.
> Description of induced lymphopenia on dimethyl fumarate in MS.
Main publications in 2021-2022

ORCID number: 0000-0002-3026-3595

CHUV
www.chuv.ch/crn-maladies-neuromusculaires

Unisciences
www.unil.ch/unisciences/marietheaudin
Magnetic Resonance Imaging Platform (MRI)

Assoc. Professor Bogdan Draganski, MD
Head of the MRI Platform

The MRI platform of the Department of Clinical Neurosciences, CHUV, was established in 2013 thanks to the generous support from the charitable foundations Roger De Spoelberg and Partridge. Pr Bogdan Draganski is the Director of the platform, the technical and methodological support is ensured by the expertise of LRENs Principal Investigators - Pr Antoine Lutti and Dr Ferah Kherif.

Equipment & Expertise
The platform consists of a high-end 3T MR system offering optimal signal-to-noise ratio, speed and stability, additionally to equipment for real-time assessment of study participants’ behaviour during data acquisition.

Mission & Services
The mission of the MRI platform is to provide the needed research infrastructure for clinical and basic neuroscientists to study human brain structure and function relevant to health and disease.

LRENs MRI physics group offers in-house developed brain imaging acquisition sequences for optimal sensitivity in cross-sectional and longitudinal studies alongside a full range of customized protocols for assessment of brain anatomy and function. The support team includes an MRI engineer and experienced radiographer for optimal data acquisition.

UNIL
www.unil.ch/lren
Electrophysiology Platform (EEG Platform)

Senior Lecturer Marzia De Lucia
Head of the EEG Platform

The EEG platform at the Department of Clinical Neuroscience (https://eegplatformdnc.com/) is coordinated by Dr Marzia De Lucia since November 2017. The platform supports collaborative initiatives for sharing available equipments and advanced techniques for the analysis of electroencephalography and stereo electroencephalography recordings in humans.

Equipment & Expertise
The Department of Clinical Neuroscience is equipped with several EEG systems hosted across different laboratories and research units. A non-comprehensive list of available equipments includes:

- 63 channels g.tec system (De Lucia’s laboratory)
- 64 channels ANT (Démonet’s laboratory)
- 128 channels g.tec system (Diserens’ laboratory)
- 128 Micromed system for scalp and intracranial recordings (Ryvlin’s lab and EEG unit)
- EG electrode digitizer - ANT xensor™ for electrode digitization with infrared camera (Ryvlin’s lab and EEG unit).

Mission & Services
The mission of the EEG platforms are sharing a comprehensive set of user-friendly tools for the analysis of electrophysiological recordings (https://github.com/DNC-EEGplatform), providing support for designing and implementing EEG experiments, developing tools that can support the development of common scientific topics, promoting discussions about ongoing and future projects.

EEG platform website
https://eegplatformdnc.com/

EEG analysis repository
https://github.com/DNC-EEG-platform

Unisciences
www.unil.ch/unisciences/marziadelucia
Neuroscape Facility

Assoc. Professor Arseny Sokolov
Head of the Neuroscape Facility

The Neuroscape Facility implements serious video games for cognitive neurology, neuropsychology and neurorehabilitation. The Facility has been established in January 2018, is co-directed by Professors Arseny Sokolov and Andrea Serino, and located in the Pavilion 4 at the CHUV. The Facility is a founding member of the Neuroscape Alliance (https://neuroscape.ucsf.edu/alliance/), spear-headed by the Neuroscape Center at the University of California San Francisco.

Equipment & Expertise
The Neuroscape Facility is equipped with virtual reality devices, a driving simulator, an immersive giant screen, high-end computers, whole-body tracking and wearable physiological sensors. Research staff and collaborators consist of engineers, neuroscientists, neuropsychologists, physical therapists and neurologists with expertise in neurological rehabilitation.

Mission & Services
The mission of the Neuroscape Facility is to design, assess, validate and implement novel gamified technological approaches for the assessment and rehabilitation of cognitive function and behavior in neurological patients. To this end, the Facility initiates projects itself, but is also available to colleagues interested in performing fundamental research or clinical trials using gamified and immersive technology for cognitive assessment and/or neurorehabilitation.

Unisciences
www.unil.ch/unisciences/arsenysokolov

https://neuroscape.ucsf.edu/alliance/
In the 1960s, Swedish neurosurgeon Lars Leksell created the Gamma Knife, a technique to focus high dose radiation focused in intracranial targets with submillimeter accuracy. Gamma Knife is a radio-neurosurgical approach used as an alternative to open microsurgical procedures in many neurosurgical conditions, combining stereotactic image guidance with high-precision robotic beam delivery.

Equipment & Expertise
The Gamma Knife radio-neurosurgery platform was established in CHUV in June 2010. The first model used was Leksell Gamma Knife Perfexion. Since 2016, our hospital is equipped with the latest model, Leksell Gamma Knife ICON. The Gamma Knife Center is directed and coordinated by Professor Marc Levivier, who is the current President of the International Stereotactic Radiosurgery Society.

Mission & Services
Gamma Knife radio-neurosurgery is an ambulatory procedure, which includes frame attachment or mask immobilisation (allowing for hypo-fractionated procedures), acquisition of imaging, target determination and further treatment planning, stereotactic radiation and clinical and radiological follow-up. The clinical applications of Gamma Knife radio-neurosurgery include benign and malignant conditions of the brain and skull-base, vascular malformations and functional procedures. Our Gamma Knife Center serves as a source for clinical and translational research. During the past 12 years, more than 130 peer-reviewed papers have been published. Internal collaborations are primarily with the Neuroradiology, Radiotherapy or ENT departments, as well as with EPFL (Prof. Jean-Philippe Thiran, Prof. Van de Ville). International collaborations include the CHU Timone in Marseille (France), Oxford University (United Kingdom), and Roger Salengro Hospital in Lille (France). Numerous prizes have rewarded our projects, including, among others, the Excellence Prize of the University of Lausanne in 2019 (Dr Tuleasca, PD&MERC for his MD-PhD project related to the radiobiology of radiosurgical thalamotomy for tremor).

CHUV
www.chuv.ch/gamma-knife

Unisciences
www.unil.ch/unisciences/marclevivier

https://www.isrsy.org/en/
The Medical Informatics Platform (MIP) is a digital platform dedicated to the federation and federated analyses of health datasets distributed across different institutions and countries. It enables sharing such data without requiring individual data to be moved away from their original site of storage and being centralized. The MIP web-based front-end provides a user-friendly interface to launch queries that will be executed on the data in each participating hospital on their federated datasets, simultaneously, to retrieve and aggregate the findings. Thanks to this framework, the MIP offers an ideal solution to federate de-centralised data and develop novel predictive models, while ensuring data privacy and GDPR compliance. Anonymised data of any research area of interest can be analysed with the MIP.

Equipment & Expertise
The MIP is an open-source free-of-use software, developed within the framework of the Human Brain Project (HBP), which is currently installed in more than 40 European Hospitals, and used to run health data federations in the fields of dementia, traumatic brain injury, epilepsy, mental health and soon on stroke. Platform activities are supported by an IT and data management team.

Mission & Services
The MIP team @ NeuroTech, with Prof. Ryvlin being the product owner of the MIP, is committed to help health stakeholders federating new datasets and creating new federations on any topics of interest. This is particularly relevant for DNC researchers who would like to develop ambitious data sharing projects in their field of interest or to participate in ongoing federations. We aim at promoting the development and validation of predictive models in clinical neurosciences, including for rare diseases.

CHUV
https://www.chuv.ch/fr/neurosciences/dnc-home/recherche/human-brain-project

MIP
https://ebrains.eu/service/medical-informatics-platform
Human Intracerebral EEG Platform (HIP)

Professor Philippe Ryvlin
Head of the Human Intracerebral EEG Platform (HIP)

The Human Intracerebral EEG Platform (HIP) is a digital platform dedicated to the collection, storage, sharing and analysis of Human intracerebral EEG data recorded from patients with drug resistant epilepsy undergoing pre-surgical evaluation using stereo-EEG (SEEG). It provides unique facilities to transfer such data from hospitals to the HIP, convert EEG files into BIDS-SEEG format, access workflows to precisely locate each recording SEEG contact on patient’s MRI, and run state-of-the-art SEEG analytical tools. 73 European, Asian and Australian centers have committed to share SEEG data on HIP, representing up to 1000 patients per year. Such data are being used to investigate scientific issues in the fields of epilepsy but also cognition at large.

Mission & Services
The HIP team @ NeuroTech is committed to promote the usage of the HIP by investigators interested in using SEEG data for epilepsy or cognition-driven research. In particular, novel cognitive paradigms are welcome to enrich the list of research protocols run by the HIP consortium.

Equipment & Expertise
The HIP is being developed by the NeuroTech team within the framework of the Human Brain Project (HBP). In September 2022, a HIP closed-beta version was opened to 10 European Health Centers for exploration and testing of the provided functionalities. The platform is supported by an IT and scientific team.

CHUV
https://www.chuv.ch/fr/neurosciences/dnc-home/recherche/human-brain-project

HIP
The platform was first developed and installed in 2010 by PI F. Kherif for the Stroke Study and Neuro-Geno Project with charitable support from Pharnext. With the help of Pharnext, the platform was expanded in 2011 to provide free access and support to researchers at CHUV and other institutions. There are currently more than 80 projects and 250 active users. Unlike other RedCap instances at the CHUV, we offer free support and extended services beyond data collection, including all the tools needed for a neuroscience project (metadata, collection, curation and analysis).

Equipment & Expertise

Brainsystem is a web-based platform with tools and resources for neuroscience projects, including REDCap and custom-built science platforms. By using the Redcap platform, users can create and manage online surveys and databases, and the data science component streamlines the process of designing AI-based neuroscience project. F. Kherif oversees user and data management, surveys and statistics, and AI experiments for the platform. He is supported by an IT technician.

Mission & Services

Users’ management, data capture projects, APIs for loading data, data curation, data science tools (descriptive of advanced statistical or AI-based techniques).

CHUV

https://lren.chuv.ch/redcap/
Brain Tumor Biobank Platform

Professor Monika E. Hegi
Head of the Brain Tumor Biobank Platform

The Brain Tumor Bank of the Laboratory of Brain Tumor Biology and Genetics (LBGT) and the Service of Neurosurgery is a prospective collection of brain and spine tumor samples associated with a clinical database since 1983. It is directed and coordinated by Prof. Monika Hegi and is located at the CHUV campus in Epalinges (CLE). The BTbiobank of the LBGT is accredited by the CHUV (BB_031_BBLBGT), has received the certificate VITA from the Swiss Biobanking Platform, and has been approved by the local ethics committee (CER-VD, F25/99).

Biobank & Expertise
The BT-biobanque of the LBGT comprises over 5100 entries and represents a valuable research tool of the Brain and Spine Tumor Center of the CHUV. This prospective collection comprises brain and spine tumors operated by the service of neurosurgery and the spine center at the CHUV, and corresponding blood samples (PBMC and plasma), with informed consent of the patients. For a subset of the patients, CSF is available. A panel of glioblastoma derived cell-lines and/or sphere lines (isolated and kept under stem cell conditions) have been established and characterized. Research staff consists of biologists with expertise in experimental neuro-oncology (in vitro and in vivo) and molecular biology, and a biostatistician/bioinformatician with expertise in multi-OMICS data analyses.

Mission & Services
The BB serves as resource for translational and basic research projects within the institution, shares resources in local and international academic collaborations, and collects tissue for translational research in clinical trials.

- Resource to study different molecular aspects of brain tumor biology and (epi-)genetics in association with the clinical course and response to therapy, including, but not limited to, interaction with the immune system.
- Biomarker development (diagnostic, predictive).
- Target discovery for novel treatments.