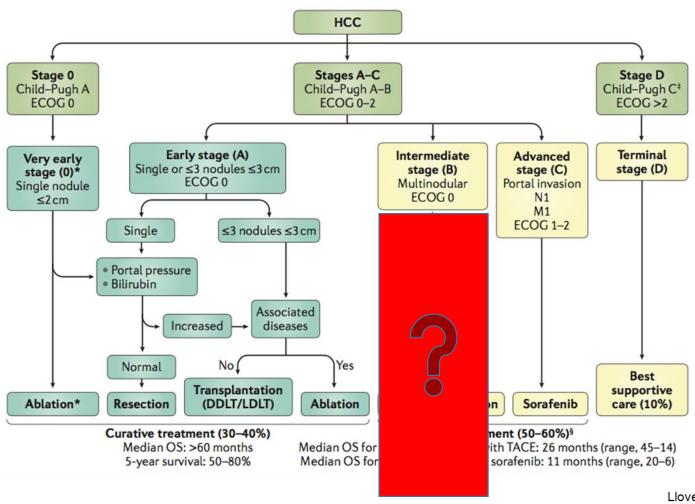

# Surgery in Intermediate stage HCC: Where do we stand?



PD Dr. Emmanuel Melloul, FEBS (HPB)
Department of Visceral Surgery
University Hospital CHUV, Lausanne, Switzerland


## Background

# Algorithm of Barcelona Clinic Liver Cancer (BCLC)



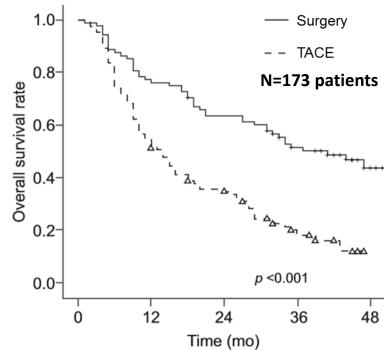
Llovet JM et al. Nat Rev Dis Prim 2016

# Background Any Benefit of Surgery in BCLC stage B HCC?



Llovet JM et al. Nat Rev Dis Prim 2016








#### Partial hepatectomy vs. transcatheter arterial chemoembolization for resectable multiple hepatocellular carcinoma beyond Milan criteria: A RCT

Lei Yin<sup>1</sup>, Hui Li<sup>2,†</sup>, Ai-Jun Li<sup>1,†</sup>, Wan Yee Lau<sup>1,3</sup>, Ze-ya Pan<sup>1</sup>, Eric C.H. Lai<sup>1,3</sup>, Meng-chao Wu<sup>1</sup>, Wei-Ping Zhou<sup>1,\*</sup>

<sup>1</sup>The Third Depart ment of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China; <sup>2</sup>The Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai 200438, China; <sup>3</sup>Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region

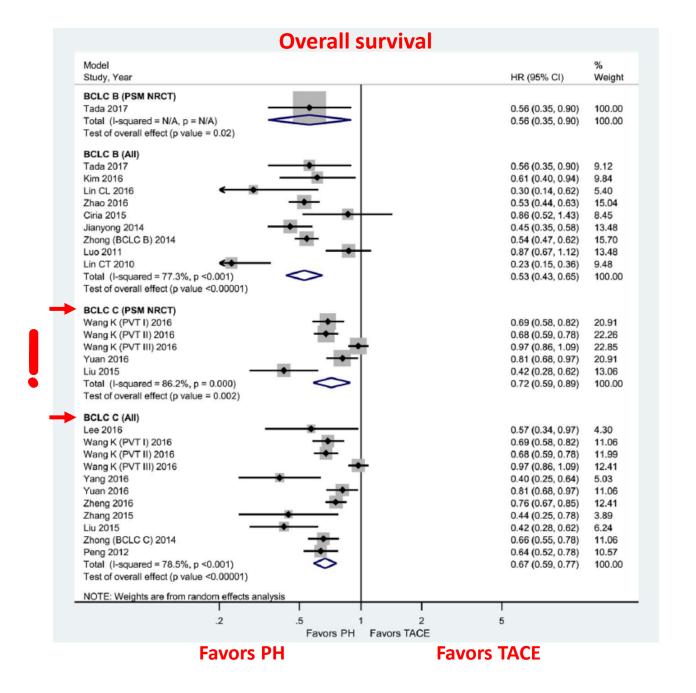


|                                         | PH            | TACE           |  |
|-----------------------------------------|---------------|----------------|--|
| Biggest tumor diameter (cm) (mean ± sd) | 7.3 ± 2.5     | 7.4 ± 2.3      |  |
| Total tumor diameter (cm) (mean ± sd)   | $9.5 \pm 3.0$ | $10.4 \pm 3.3$ |  |
| Number of tumor <sup>††</sup>           |               |                |  |
| 2                                       | 55            | 48             |  |
| 3                                       | 22            | 29             |  |
| 4                                       | 9             | 6              |  |
| 5                                       | 2             | 2              |  |

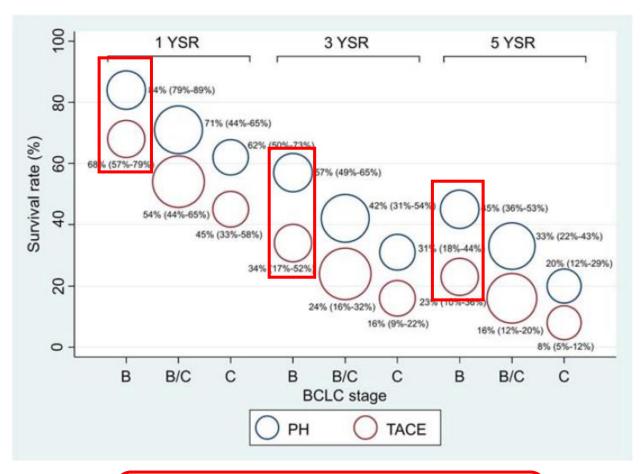
Yin L et al. J Hepatol 2014

#### HEPATOLOGY




HEPATOLOGY, VOL. 00, NO. 00, 2018

### Hepatic Resection Compared to Chemoembolization in Intermediateto Advanced-Stage Hepatocellular Carcinoma: A Meta-Analysis of High-Quality Studies


Myung Han Hyun , Young-Sun Lee , Hyung Joon Yim, Jong Eun Yeon, and Kwan Soo Byun Kul Jung, Young Kul Jung, Yo

#### 18 studies included

- 1 RCT
- 5 prop score matching studies
- 12 Non-RCTs
- 5986 patients



# 1-, 3-, and 5 years survival Partial hepatectomy vs. TACE



Median survival at 5 years in BCLC B: 45% after Partial Hepatectomy 23% after TACE



## Critical assessment of Hyun et al. metaanalysis

### HEPATOLOGY



Correspondence 🙃 Full Access

Surgical Resection vs. Transarterial Chemoembolization for Intermediate Stage Hepatocellular Carcinoma (BCLC-B): An Unsolved Question

Ismail Labgaa, Nicolas Demartines, Emmanuel Melloul

First published: 01 November 2018 | https://doi.org/10.1002/hep.30338

- One study included patients with sequential treatments (SR and TACE)
- 4/9 analyzed studies included patients with single large HCC (>5 cm)

## Hypothesis and Aim

### Hypothesis

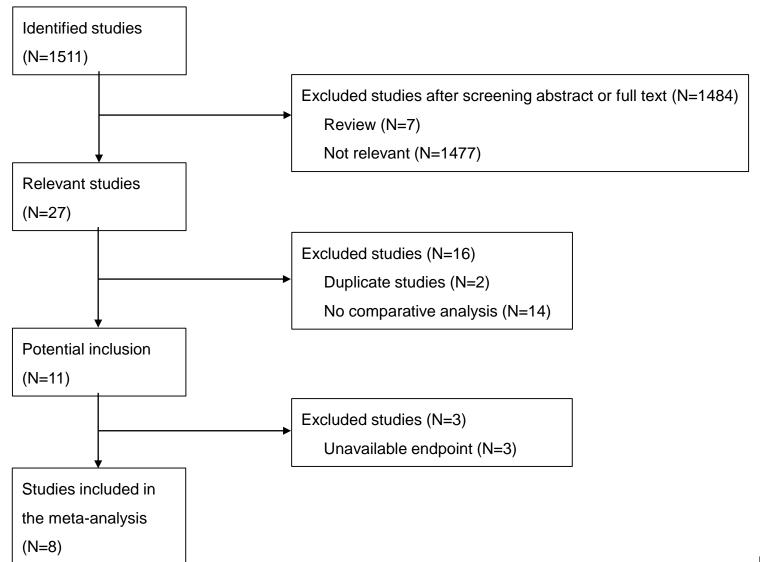
BCLC algorithm may be too restrictive, leading to the exclusion of patients with intermediate HCC (BCLC-B) who would benefit from surgery.

### Aim

To analyze long-term outcomes of liver resection (LR) compared to transarterial chemoembolization (TACE) in patients with intermediate stage HCC (BCLC-B).

### **METHOD**

Systematic review of the literature according to PRISMA guidelines.


#### Inclusion criteria:

- Only trials comparing Liver Resection with TACE
- Patients with HCC of stage B (BCLC-B)

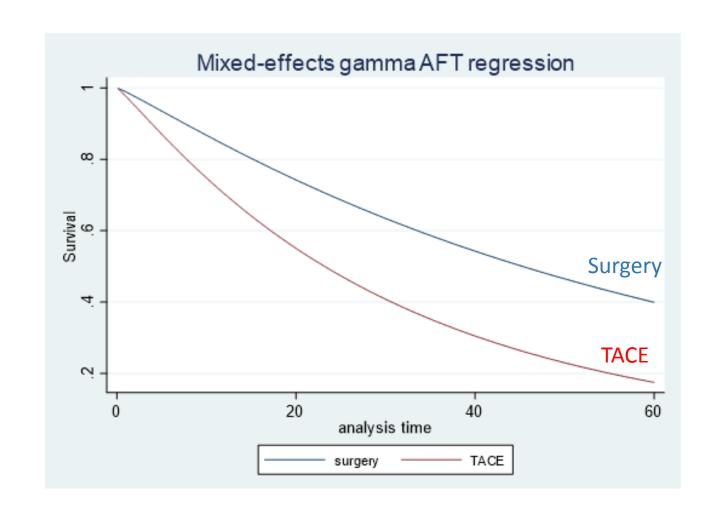
Primary outcome = overall survival (OS)

Secondary outcome = treatment-related mortality

## PRISMA FLOWCHART

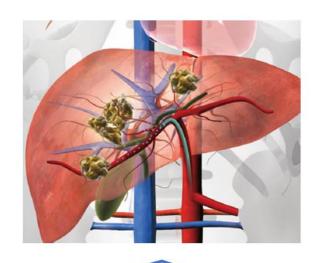


## **RESULTS**


| Authors         | Year | Design                           | LR  | TACE | Country |
|-----------------|------|----------------------------------|-----|------|---------|
| Lin et al.      | 2010 | Retrospective series             | 93  | 78   | Taiwan  |
| Zhong et al.    | 2013 | Retrospective series             | 257 | 135  | China   |
| Jianyong et al. | 2014 | Retrospective series             | 433 | 490  | China   |
| Yin et al.      | 2014 | RCT                              | 88  | 85   | China   |
| Ciria et al.    | 2015 | Retrospective series             | 36  | 44   | Spain   |
| Kim et al.      | 2016 | Retrospective series             | 52  | 225  | Korea   |
| Zhao et al.     | 2016 | Retrospective series             | 274 | 169  | China   |
|                 |      | Retrospective series, propensity |     |      |         |
| Tada et al.     | 2017 | Score Analysis                   | 132 | 132  | Japan   |

Total 8 trials 1365 1358

2723



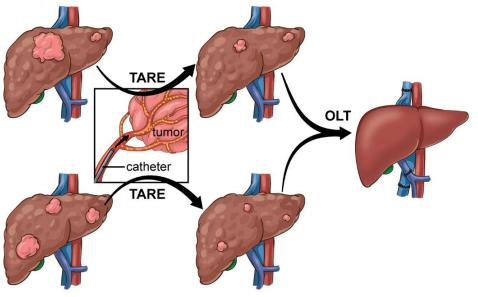

## **RESULTS**



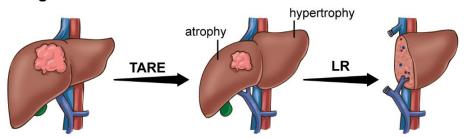
## Other alternatives to TACE?

# Y90 as a «bridge» to liver surgery




- · Controlling the liver tumor.
- Limiting tumor progression in the tumor-naive (and untreated) lobe.

 Induce volumetric changes in liver lobes


# Y90 as a bridge to surgery

# Proof-of-concept

#### **Bridge to Transplant**



#### **Bridge to Resection**



J Gregory ©2018 Mount Sinai Health System



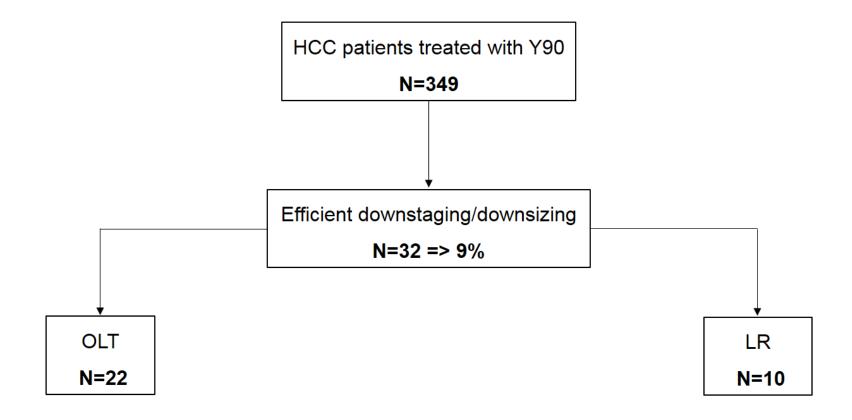


### **METHOD**

Patients: Patients undergoing exclusively Y90 followed by either OLT or LR.

Center: Mount Sinai, New York, USA

Period: 2012-2016


**Primary outcome:** Postoperative morbidity and mortality (Clavien classification)

Secondary outcome: Overall survival (OS) and response to Y90 (mRECIST and pathology)





# **Results**Flowchart





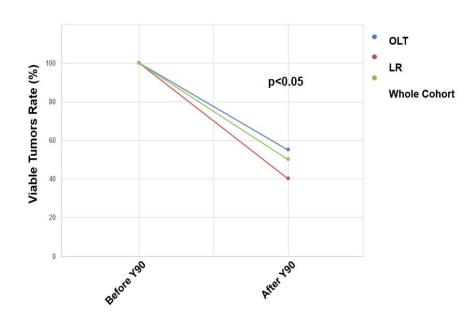


# Results Demographic data

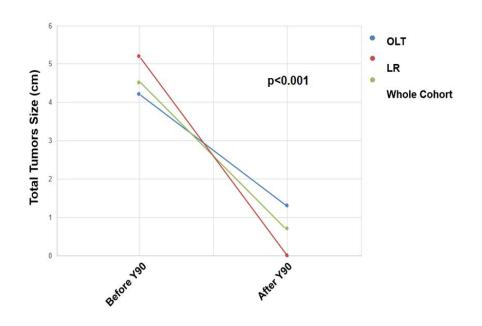
|                           |              | OLT<br>(n=22)  | LR<br>(n=10)     | Total<br>(n=32)  |
|---------------------------|--------------|----------------|------------------|------------------|
| Age ≥ 60 years            |              | 13 (59)        | 5 (50)           | 18 (56)          |
| Gender (male)             |              | 15 (68)        | 7 (70)           | 22 (69)          |
| BMI (kg/m²)               |              | 27.6 (25-30.8) | 24.9 (22.1-28.4) | 26.6 (24.4-30.5) |
| Cirrhosis                 |              | 21 (96)        | 6 (60)           | 27 (84)          |
|                           | Child-Pugh A | 1 (5)          | 9 (90)           | 10 (32)          |
|                           | Child-Pugh B | 8 (36)         | 0                | 8 (26)           |
|                           | Child-Pugh C | 13 (59)        | 0                | 13 (42)          |
|                           | HB∨          | 2 (9)          | 0                | 2 (6)            |
|                           | HCV          | 14 (64)        | 7 (70)           | 21 (66)          |
| Median MELD score         |              | 31 (25-33)     | 8 (7-10)         | 26 (10-33)       |
| Underlying liver disease  |              |                |                  |                  |
| HIV                       |              | 0              | 2 (20)           | 2 (6)            |
| Portal hypertension       |              | 21 (96)        | 0                | 21 (66)          |
| Multiple lesions          |              | 14 (64)        | 5 (50)           | 19 (59)          |
| Bilobar disease           |              | 4 (18)         | 1 (10)           | 5 (16)           |
| Median size of tumor (cm) |              | 4.2 (2.6-5)    | 5.2 (2.6-11.5)   | 4.5 (2.7-5.7)    |
| BCLC stage                |              |                |                  |                  |
|                           | Pre-surgery  |                |                  |                  |
|                           | BCLC A       | 22 (100)       | 6 (67)           | 28 (90)          |
|                           | BCLC B       | 0              | 3 (33)           | 3 (10)           |



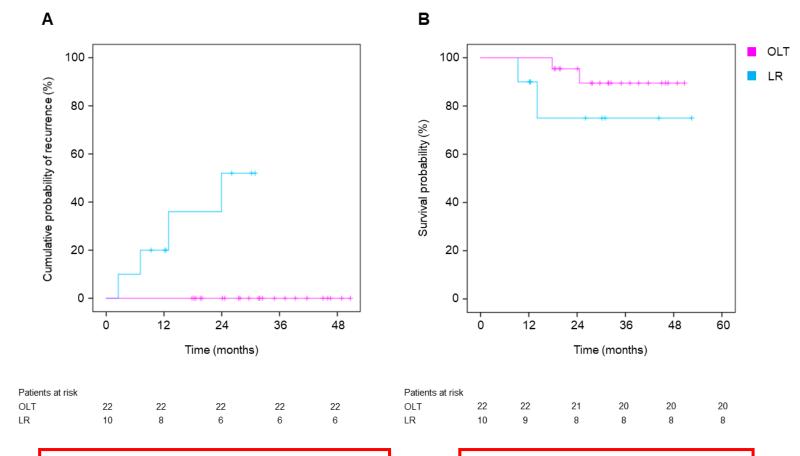



## Results

# Short term outcomes


|            |                  |         | OLT (n=22)      | LR (n=10)        | Total (n=32)    |
|------------|------------------|---------|-----------------|------------------|-----------------|
| ISGLS      |                  |         |                 |                  |                 |
|            | Liver failure    |         | 0               | 1 (10)           | 1 (3)           |
|            |                  | Grade A | 0               | 0                | 0               |
|            |                  | Grade B | 0               | 0                | 0               |
|            |                  | Grade C | 0               | 1 (10)           | 1 (3)           |
|            | Bile leak        |         | 1 (5)           | 0                | 1 (3)           |
|            |                  | Grade A | 0               | 0                | 0               |
|            |                  | Grade B | 1 (5)           | 0                | 1 (3)           |
|            |                  | Grade C | 0               | 0                | 0               |
| Clavien    |                  |         |                 |                  |                 |
|            | Minor (I-II)     |         | 20 (91)         | 4 (40)           | 24 (75)         |
|            | Major (III-IV)   |         | 4 (18)          | 1 (10)           | 5 (16)          |
|            | Mortality (V)    |         | 0               | 1 (10)           | 1 (3)           |
|            | Any complication | n       | 20 (91)         | 5 (50)           | 25 (78)         |
| Biomarkers |                  |         |                 |                  |                 |
|            | AST peak         |         | 560 (53-1688)   | 246 (179-585)    | 345 (165-1420)  |
|            | ALT peak         |         | 415 (94-688)    | 213 (146-646)    | 288 (116-496)   |
|            | Creat peak       |         | 1.4 (1.05-1.73) | 0.85 (0.58-1.23) | 1.3 (0.8-1.6)   |
|            | Bili peak        |         | 3.05 (1.65-5.2) | 1.9 (1.43-2.3)   | 2.3 (1.53-4.83) |
|            | INR peak         |         | 1.55 (1.2-2.25) | 1.15 (1.1-1.33)  | 1.35 (1.13-1.8) |

# Results Response to Y90 treatment


#### Number of viable tumors



#### **Tumors size**



# Results Reccurence and Survival



Median time to recurrence 10 months

1-year survival rate = 97%3-years survival rate = 86%5-years survival rate = 86%





### **Conclusions**

- Surgery for intermediate HCC (BCLC B) offers better long term survival compared to TACE with low procedure related mortality
- Liver surgery after TARE is safe and feasible
- In a subset of HCC patients, Y90 radioembolization may be use as a «bridge» to Liver resection or Liver transplantation
- There is a need to refine selection criteria for surgery of BCLC-B stage patients

# Thank you for your attention!

