Treatment of hepatitis C in 2015

Whom? When? How

G Dusheiko UCL Institute of Liver and Digestive Health Royal Free Hospital London

Overview of the hepatitis C virus (HCV) lifecycle and antiviral targets

...previrs Protease inhibitors

...asvirs NS5a inhibitors ...buvirs NS5b nucleotide inhibitors

HCV treatments 2015

Approved or imminent approvals: Protease, NS5B and NS5A inhibitors

[¥] protease inhibitor # NS5B inhibitor * NS5A inhibitor

How will we make treatment choices in the future: Will we have to stratify and select patients because of cost?

Minimal disease

Prognosis of patients with chronic HCV infection and compensated advanced liver disease can be accurately assessed with a risk score

van der Meer A J et al. Gut 2014

The risk score for clinical disease progression is represented by Rc=(5.2 * age in years) -(2.8 * platelet count per 109/L)+(5.17 – 3 * (platelet count per 109/L)2)+(358.2 * log10(AST/ALT))+(83.7 for male patients)+(60.6 in case of HCV genotype 3).

0 Clinical disease progression risk score

100

200

300

-300

-200

-100

IFN-free therapy combinations high efficacy Genotype 1

GT 1 IFN free studies published in 2014

Trial	Regimen			
ION-1	LDV/SOF ± RBV	100 -	 96	
ION-2	LDV/SOF ± RBV	100		
ION-3	LDV/SOF ± RBV	80 -		
SAPPHIRE-I	ABT-450/r/OMB + DAS + RBV	<u> </u>		
SAPPHIRE-II	ABT-450/r/OMB + DAS + RBV	%) %)		
PEARL-III	ABT-450/r/OMB + DAS ± RBV	(%) 240 -		
PEARL-IV	ABT-450/r/OMB + DAS ± RBV			
TURQUOISE-II	ABT-450/r/OMB + DAS + RBV	20 -	3672/	
COSMOS	SOF + SMV ±RBV	0 -	3826	

(Treatment regimens 8–24 weeks) Included treatment-naïve and -experienced patients

heterogeneous Phase 3 studies

DAS: dasabuvir; LDV: ledipasvir; OMB: ombitasvir

Liang J, Ghany MG. N Engl J Med 2014;370:2043–7.

Data that provide confidence that RBV is not required for many: but will it be used?

LDV/SOF ± RBV for 8, 12 or 24 weeks in GT 1 patients

1. Afdhal N, et al. N Engl J Med 2014;370:1889-98;

2. Afdhal N, et al. N Engl J Med 2014;370:1483-93;

3. Kowdley KV, et al. N Engl J Med 2014370:1879-88.

SIRIUS: SOF LDV ± RBV

Childs A Cirrhosis treatment experienced

LDV/SOF in treatment experienced cirrhotic patients: 12 vs 24 weeks

Error bars represent 95% confidence intervals.

An analysis of > 500 patients compensated <u>cirrhosis</u> treated with ledipasvir + sofosbuvir ± RBV

Results: SVR12 by Treatment Regimen

		тс	TAL	Trea	tment-Naïve	Treatme	nt-Experienc	ed
Overall SVR12		96%		98%		95%	-	
Duration Regimen	12 wk	95%	-	97%	-	94%		
	24 wk	98%	-	99%	-	98%		
	LDV/SOF	95%	-	96%	-	95%		
	LDV/SOF + RBV	97%	-	99%	-	96%		
	LDV/SOF 12 wk	92%		96%		90% —		
Duration/± RBV	LDV/SOF + RBV 12 wk	96%	-	98%	-	96%		
	LDV/SOF 24 wk	98%	_	97%		98%		
	LDV/SOF + RBV 24 wk	100%		100%		100%		
		80	90 1	00 80	90 10	10 80	90	100
		SVR12, %						

SOLAR-1: LDV/SOF + RBV in decompensated cirrhosis SOF LDV + RBV for 12 or 24 weeks

Error bars represent 90% confidence intervals.

SOLAR-1: LDV/SOF + RBV in post-transplant Results: SVR12

SVR rates were similar with 12 or 24 weeks of LDV/SOF + RBV

Error bars represent 2-sided 90% exact confidence intervals.

DCV + SOF in GT1 treatment naïve patients

1. Sulkowski MS, et al. N Engl J Med. 2014;370:211–21. 3. Daclatasvir summary of product characteristics.

SOF + simeprevir ± RBV in GT 1 patients

Lawitz E, et al Lancet July 26 2014 epub ahead of print

Treatment for GT 4 with LDV/SOF

Interim results from a single center, open-label, Phase 2a trial of LDV/SOF in HCV GT 4

95% SVR12 with LDV/SOF for GT 4 HCV No patient discontinued due to an AE

*One patient has not reached SVR12 timepoint yet

EU Recommendation treatment (SOF + LDV) Harvoni^R, or daclatasvir Genotype 1 or 4

Patient population	Treatment	Duration	Note
Patients without cirrhosis	SOF + LDV	12 weeks	8 weeks in naïve G1 24 weeks in naïve uncertain retreatment option
	SOF + DCV	12 weeks	Consider 24 weeks for TE
Patients with compensated cirrhosis	SOF + LDV	24 weeks	
	SOF + DCV	24 weeks	Shorten 12 weeks TN cirrhosis favourable Consider adding RBV
Patients with decompensated cirrhosis	SOF + LDV + RBV	24 weeks	

SmPC Gilead Sciences 21 Nov 2014; Daclatasvir SmPC 2014

Sofosbuvir based regiments NS5a inhibitor G1: Usage

- Sofosbuvir + ledipasvir genotype 1
 - treatment naïve without cirrhosis
 - 8-12 weeks without RBV
- Treatment naïve or experienced patients with cirrhosis
 - Compensated cirrhosis: 12 weeks plus ribavirin
- Decompensated cirrhosis (Childs B and C)
 - 12 weeks or 24 weeks with RBV
 - Urgent need to specify duration
 - Pre-treatment and on treatment host and viral factors that presage relapse and to adjust
 - Aim to use regimen that reduces relapses to a minimum (< 10%)
- Sofosbuvir + daclatasvir
 - As above?
- Sofosbuvir + simeprevir: 12 weeks no RBV ? Exposure SMV decompensated

SVR ± RBV with paritaprevir, ombitasvir + dasabuvir in GT 1 patients

* RBV-free arm did not meet non-inferiority vs RBV-containing arm

Paritaprevir ombitasvir + dasabuvir SVR12 in GT 1a

p values from Fisher's exact test

All 3D-treated patients were treatment-naïve at baseline

Paritaprevir ombitasvir + dasabuvir SVR12 in GT 1a cirrhosis TN and TE

p values from Fisher's exact test

Everson et al AASLD 2014

AbbVie Viekirax + Exviera ± RBV G1

Genotype 1b:

Pooled analysis of Phase 3 trials in HCV GT 1b-infected patients without cirrhosis:

- RBV did not increase SVR 12 rates in GT 1b-infected patients and is not required in the treatment of non cirrhotic HCV GT 1b
- RBV recommended for treatment of 1b with cirrhosis

Genotype 1a

Pooled analysis of HCV GT 1a-infected patients with or without cirrhosis from four phase 3 trials:

- GT 1a-infected patients without cirrhosis benefit from inclusion of RBV with SVR 12 rates of 96% with 12 weeks of therapy
- GT1a- infected patients with cirrhosis: longer duration 24 weeks

Viekirax: ombitasvir/paritprevir/ritonavir Exviera: dasabuvir

IFN-free regimens of paritaprevir + ombitasvir ± RBV in G4 patients: PEARL-I study results

*3 non-SVR naive patients without RBV had VF: 1 breakthrough, 2 relapses. 2/3 had BL NS5A RAVs

93% FO-2 (no cirrhosis)

Most common AEs: Headache asthenia, fatigue, nausea Safety and tolerability of regimen consistent with 3D + RBV regimen in G1

EU prescribing information Viekirax + Exviera

	Cirrhosis	Regimen	RBV	Duration
1b	No	Viekirax + Exviera	No	12 weeks
1b	Yes	Viekirax + Exviera	Yes	12 weeks
1a	No	Viekirax + Exviera	Yes	12 weeks
1a	Yes	Viekirax + Exviera	Yes	24 weeks
4	No	Viekirax	Yes	12 weeks
4	Yes	Viekirax	Yes	24 weeks

SOF-Based Regimens for HCV GT 3 Cross study comparison

- SOF+RBV x 24 weeks (VALENCE)
- ■LDV/SOF+RBV x 12 weeks (ELECTRON-2)
- SOF+PegIFN+RBV x 12 weeks (TN: PROTON/ELECTRON; TE: LONESTAR-2)

Sofosbuvir + Daclatasvir Genotype 2 or 3 naive

Sulkowski MS, et al. *N Engl J Med.* 2014;370:211–21 . Daclatasvir SmPc Use of RBV Daclatasvir product summary

All-Oral 12-Week Combination Treatment With Daclatasvir and sofosbuvir in Patients Infected With HCV Genotype 3: ALLY-3 Phase 3

Among patients with cirrhosis, 34% (11/32) had baseline platelet counts < 100,000/mm³

^a Cirrhosis status determined in 141 patients by liver biopsy (METAVIR F4), FibroScan (> 14.6 kPa), or FibroTest score \geq 0.75 and APRI (aspartate aminotransferase to platelet ratio index) > 2.

^b Cirrhosis status for 11 patients was inconclusive (FibroTest score > 0.48 to < 0.75 or APRI > 1 to \leq 2).

Genotype 3 sofosbuvir + NS5A inhibitor: LDV or DCV ± RBV:

Non comparative studies with varying populations and regimens

Sulkowski MS, et al. N Engl J Med. 2014;370:211-21; Nelson et al AASLD LB3 2014; Gane et al LB11 AASLD 2014

EU Recommendation treatment (SOF + LDV) Harvoni^R or sofosbuvir + daclatasvir Genotype 3

Patient population	Treatment	Duration
Cirrhosis and/or prior treatment failure	SOF + LDV + RBV	24 weeks
	SOF + DCV + RBV	24 weeks

SmPC Gilead Sciences 21 Nov 2014; Daclatasvir SmPC

Conclusion: SOF + NS5a inhibitor for genotype 3

- Satisfactory response (> 90%) can be achieved in treatment naïve non cirrhotic: (94-97%)
 - EU licence is silent?
 - 12 weeks without RBV?
- Higher relapse rates treatment experienced, cirrhosis
- Patients with cirrhosis
 - Lower results without RBV or shorter duration?
 - 58% 69-73%
 - SmPCs suggests 24 weeks (plus RBV)
- Decompensated cirrhosis
 - Expanded access (UK) will inform

New agents: SOF + GS5816 Genotype 3

Non comparative studies with varying populations and regimens

■ TN NC + RBV ■ TN NC - RBV ■ TE NC + RBV ■ TE NC - RBV ■ TE C + RBV ■ TE C - RBV

Urgent lessons to be learned from DAA IFN free therapy in decompensated cirrhosis

- What degrees of cirrhosis impair response?
 - Higher rates of relapse observed
- What are the consequences of relapse?
- Are pre-existent resistant variants more critical in this group?
- Are there higher rates of adverse events in patients with decompensated cirrhosis?
- What is the optimal duration of therapy for different stages of cirrhosis?
- What is the optimal timing?
- To what degree is disease reversible?

Pre – transplant DAA therapy: strategies and outcomes

Resistance-Associated Variants Present at Time of Virologic Failure in Patients Receiving 3D+RBV

Development of resistance-associated variants occurred in 8/473 (1.7%)

Patient	GT	Type of Virologic Failure	NS3	NS5A	NS5B
1	1a	On-treatment failure at Week 12	R155K, D168V	Q30R	S556G, 559N
2	1a	Relapse at PT Week 2	D168V	M28T	S556G
3	1a	Relapse at PT Week 2	V36A, D168V	M28T	none
4	1a	Relapse at PT Week 8	none	M28V*, H58P*	none
5	1a	Relapse at PT Week 8	D168V	Q30R	Y561H
6	1a	Relapse at PT Week 8	D168V	Q30R	none
7	1a	Relapse at PT Week 12	D168V	Y93N*	S556G
8	1b	Relapse at PT Week 2	Y56H, D168V	L31M*, Y93H*	S556G*

*Variant also present at baseline

Kindly provided by Feld et al NEJM 370: 1594-603 2014

Disruption of virus-induced replication compartment formation by NS5A inhibitors

Eyre NS, et al. Gastroenterology. 2014 Sep 26. doi: 10.1053/j.gastro.2014.09.024.

Effect of NS5a inhibitor on membranous web biogenesis Wild type versus Y93H

ION2: effect of baseline HCV RAVs on treatment outcome with SOF/LDV (12 weeks) in HCV genotype 1 treatment-experienced patients

In the pooled analysis of the **Phase 3 studies**, **16% of patients had baseline NS5A RAVs** identified by population or deep sequencing irrespective of subtype.

Baseline NS5A RAVs were overrepresented in patients who experienced relapse in the Phase 3 studies

NS5A RAVs that conferred > 100-fold shift in EC50 and were observed in patients were the following substitutions in genotype 1a (M28A, Q30H/R/E, L31M/V/I, H58D, Y93H/N/C) or in genotype 1b (Y93H). *or conferring < 100 FC EC50 RAV: resistance-associated variant

Re-treatment after prior exposure to NS5a inhibitor

- Majority of patients with pre existing NS5A RAVs respond to NS5A inhibitors
- Selection of NS5A resistance mutations that reduce the susceptibility to LDV or DCV is seen in most failing treatment with SOF LDV or SOF DCV
- Data indicate that such NS5A mutations do not revert on long term follow up
 - Presently no data to prove efficacy of LDV or DCV against high level NS5A resistant mutations
 - Such patients may therefore be dependent on SOF RBV, (longer duration) or other drug classes for clearance of HCV infection
 - Innate immune response?
HCV and cryoglobulinaemia

- Cirrhosis, membranous glomerulonephritis, mixed essential cryoglobulinaemia and vasculitis associated chronic hepatitis C.
- HCV continuous stimulus for production of circulating immune complexes which may form cryoprecipiates
- Complement:
 - cold-insoluble immune complex -mediated vasculitis
 - involving small blood vessels different tissues including skin, kidney, peripheral, and central nervous system.
- B-cell clonal selection may arise as a result of antigen stimulation
 - May lead to malignant B-cell proliferation.
- Optimal treatment relies on reducing HCV RNA as the driver of the process?

B cell homeostasis in chronic hepatitis C virus–related mixed cryoglobulinemia is maintained through naïve B cell apoptosis

B cell numbers paradoxically reduced in HCV-infected patients with MC HCV patients Increased sensitivity of naive B cells to apoptosis: reduction in size of naive B cell subset.

80%, 14%, and 2.5% recovered in urine, faeces, and expired air Urine: recovered: GS331007 (78%) 3.5% as sofosbuvir.

Sofosbuvir pharmacokinetics in renal impairment

	Sofosbuvir	GS331007	Mild eGFR ≥ 50 and < 80	Moderate eGFR ≥ 30 and < 50	Severe (eGFR < 30	ESRD
Plasma half life	0.48-0.75 hrs	7.2 - 11.8 hrs				
Cmax ng/ml	603	1378				
AUC ng/ml	539	9369				
Sofosbuvir AUC			61%	107%	171%	28% pre 60% post
GS331007			55%	88%	451%	

Safety, efficacy and phramokinetics of Sofosbuvir in ESKD

- 10 patients with ESKD (eGFR < 30 ml/mn) and HCV (GT-1, 7GT-1a, 2 GT-1b and7 GT-3) without cirrhosis. 7/10 were naive ,were treated with SOF 200 mg/j and RBV 200 mg/j.
- Efficacy :
 - HCV RNA undetectable at w2, W4.
 - SVR 12 = SVR 24 = 40 %
 - No relation between AUC and SVR 12
- Safety :
 - 20 % AE (anemia)
 - 4 dose reduction and 1 RBV stopped
 - No SOF discontinuation
- → Despite favorable pharmacokinetics and good tolerance, efficacy is poor due to partly difficulty of managing ribavirin ?

Pharmacokinetics of sofosbuvir and his metabolite : GS-331007

AUC appears to be equivalent for sofosbuvir and X4 for GS-331007 compared to patients with normal eGFR but without clinical impact so far.

ABT-450/, ombitasvir with or without dasabuvir in subject with renal impairment

- Phase I multicenter, single dose non fasting open label, 2 period study of 3D and 2D in patients with renal impairement compared to subject with normal renal function.
- 24 subjects without HCV were compared according to renal function in 4 groups according to creatinine clearance: ≥ 90 ml/mn, between 60 89ml /mm, between 30-59 ml/mm and between 15-29 ml/mm.

Compared with subjects with normal Renal function	Mild renal Impairment	Moderate renal impairment	Severe renal impairment	
AUC ombitasvir	comparable	comparable	comparable	
AUC ABT-450 et dasabuvir	↗ 20 %	7 37 %	7 50 %	
AUC ritonavir	▶ 42 %	7 80 %	7 114 %	

- None of the changes in drug exposures were clinically relevant
- Change in DAA exposure are not clinically relevant for safety
- → None of the changes in drug exposures were clinically relevant and they do not require dose adjustment.
- → Clinical studies in HCV infected patients with renal insufficiency are planned in light of these pharmacokinetic results

Daclatasvir: dose adjustment not required in subjects with renal impairment

- Compared with a normal creatinine clearance (CrCL; 90 mL/min), AUCinf estimated to increase 1.3-, 1.6- and 1.8-fold for subjects with CrCL values of 60, 30 and 15 mL/min, respectively
 - Similar estimated increases in the AUCinf of unbound free DCV were also observed
 - Increased DCV exposure was within the exposures observed in the population PK and exposure-safety assessment, which has not shown a correlation between higher exposures and adverse events (AEs)
- DCV was generally well-tolerated in subjects with normal renal function or renal impairment of varying degree
- DCV can be administered in subjects with renal impairment without dose modification

Simeprevir: dose adjustment not required in subjects with renal impairment

	LS means ^a				
Parameter	Renal impaired (test)	Healthy controls (reference)	LS means ratio	90% CI	
C _{min} , ng/mL	985.5	577.5	1.71	0.65, 4.50	
C _{max} , ng/mL	3459	2588	1.34	0.66, 2.72	
AUC _{24h} , ng.h/mL	51710	32010	1.62	0.73, 3.59	
	Median ^a		Treatment difference median	90% CI	
t _{max} , h	6.0	6.0	0.0	0.0, 2.0	

- For subjects with severe renal impairment, SMV C_{min}, C_{max} and AUC_{24h} were about 71%, 34% and 62% higher, respectively, compared with matched healthy controls
 - For t_{max}, no relevant differences were observed between the groups

AUC_{24h}, area under the plasma-time curve; CI, confidence interval; C_{max}, maximum plasma concentration; C_{min}, minimum plasma concentration; t_{max} , time to reach C_{max}

^aN: 8 for reference (healthy controls) and N: 8 for test (renal impaired)

What are the expectations of treatment?

 Likelihood of clinical improvement post SVR
Other determinants will affect outcome –Alcohol, diabetes mellitus, HIV, steatosis?
Treat before or after transplant? –Another instance of informed deferral?

Longer term outcome: HCC risk

- -Genetic alterations?
- -HCC surveillance

Eradication of HCV disease requires:

- Preventing transmission of incident infection
- Preventing progression to clinical disease

• Watershed moment in the epidemic

Treating: prioritisation strategy

- Population impact:
 - Key outcomes:
 - Incident cases of chronic infection
 - Severe liver disease and morbidity
 - In the next 20 years
- Prioritize treatment to either
 - People who inject drugs?
 - Persons with moderate or advanced fibrosis?
- Which approach?

Managing hepatitis C: a few remaining questions for today

- Has an irrevocable switch to interferon free regimens arrived?
- Likelihood of clinical improvement post SVR?
 - Liver function, HCC surveillance
- Other determinants affect outcome
 - Alcohol, diabetes mellitus, HIV, steatosis?
- Treat before or after transplant?
 - Another instance of informed deferral?
- How can the near 100% SVR rates in clinical trials be translated and back engineered in clinical practice?
- How can the same rates be achieved in patients with
 - Decompensated cirrhosis?
 - Patients with relapse following a NS5A containing regimen?
 - Genotype 3 infection?
- How can reinfection be prevented
- How do we align policy strategies?