Hepatocellular Carcinoma: The New Frontier

- Universitätsspital Basel

Markus Heim Basel, Switzerland

- Epidemiology
- The new frontier: HCC -omics

Outline

HCC and chronic viral hepatitis: direct or indirect carcinogenesis?

Epidemiology of HCC

- 7% of all cancers
- 90% of liver cancers are HCCs
- background of chronic liver disease
- Incidence of HCC increases with age, reaching a peak at 70 years (in Chinese and black African populations, mean age is younger)
- Male to female ratio = 2.4

• Worldwide, liver cancer is the sixth most common cancer (749'000 new cases), the third cause of cancer-related death (692'000), and accounts for

• 80%-90% of HCCs arise in cirrhotic livers, > 95% of HCC develop on the

Global HCC incidence

HCC incidence Europe: Men

Estimated incidence & mortality from cancer of the liver and intraheptic bile ducts in men, 2012

HCC incidence Europe: Women

Estimated incidence & mortality from cancer of the liver and intraheptic bile ducts in women, 2012

Trends in HCC incidence in Europe

Bosetti et al, Hepatology, 2008

HCC risk factors

Table 2. Geographical distribution of main risk factors for HCC worldwide.*

Geographic area	AAIR	Risk factors		Alcohol	Others
	M/F	HCV (%)	HBV (%)	(%)	(%)
Europe	6.7/2.3	60-70	10-15	20	10
Southern	10.5/3.3				
Northern	4.1/1.8				
North America	6.8/2.3	50-60	20	20	10 (NASH)
Asia and Africa		20	70	10	10 (Aflatoxin)
Asia	21.6/8.2				
China	23/9.6				
Japan	20.5/7.8	70	10-20	10	10
Africa	1.6/5.3				
WORLD	16/6	31	54	15	

*Updated from Llovet et al. [99], according to IARC data [4]. AAIR, age-adjusted incidence rate.

EASL-EORTC clinical practice guidelines HCC, J Hepatol 2012

Histopathological progression

Farazi and DePinho, Nat Rev Cancer, 2006

Chronic viral hepatitis and HCC: direct versus indirect carcinogenesis

Direct

- Viruses induce oxidative stress and DNA damage in infected liver cells
- Viruses deregulate cell cycle checkpoints of host cells
- Oncogenic mutations are fixed and propagated to daughter cells

Indirect

- The immune response to chronic viral infection results in liver inflammation
- Cytokines causes oxidative stress and apoptosis in uninfected and infected cells
- Increased hepatocyte proliferation in response to apoptosis enhances the chances that oncogenic mutations are fixed and propagated to daughter cells

HBV and HCC

HEPATOCELLULAR CARCINOMA AND HEPATITIS B VIRUS

A Prospective Study of 22 707 Men in Taiwan

R. PALMER BEASLEY CHIA-CHIN LIN LU-YU HWANG CHIA-SIANG CHIEN

University of Washington Medical Research Unit, Taipei; Institute of Public Health, College of Medicine, National Taiwan University; and Government Employees' Clinic Centre, Taipei, Taiwan

Summary A prospective general population study of 22 707 Chinese men in Taiwan has shown that the incidence of primary hepatocellular carcinoma (PHC) among carriers of hepatitis B surface antigen (HBsAg) is much higher than among non-carriers (1158/100 000 vs 5/100 000 during 75 000 man-years of follow-up). The relative risk is 223. PHC and cirrhosis accounted for $54 \cdot 3\%$ of the 105 deaths among HBsAg carriers but accounted for only $1 \cdot 5\%$ of the 202 deaths among non-carriers. These findings support the hypothesis that hepatitis B virus has a primary role in the aetiology of PHC.

- 22'707 Chinese men in Taiwan
- 3454 HBsAg positive (15.2%)
 19253 HBsAg negative (84.8%)
- mean follow-up 3.3 years (75'000 man-years)
- 41 men died of HCC
 40 of them were HBsAg positive
- relative risk 223

HBV viral load and HCC

- prospective cohort study of 3'653 participants (30-65 y) positive for HBsAg recruited in Taiwan between 1991 and 1992
- mean follow-up 11.4 years (41'779 person-years)
- treatment was not reimbursed in Taiwan until 2003: participants did nor receive antiviral treatment (natural history cohort)
- 164 incident cases of HCC

Table 1. Baseline Characte Study Cohort	eristics of the
	No. (%) of Participants (N = 3653)*
Sex	
Female	1393 (38)
Male	2260 (62)
Age, y	
30-39	1216 (33)
40-49	1014 (28)
50-59	1058 (29)
≥60	365 (10)
Cigarette smoking†	0446 (66)
NO	2410 (00)
Alcohol concumptiont	1234 (34)
No	3195 (87)
Yes	451 (12)
Hepatitis B e antigen	401 (12)
Seronegative	3088 (85)
Seropositive	565 (15)
Level of ALT, U/L	
<45	3435 (94)
≥45	218 (6)
Liver cirrhosis§	
No	3584 (98)
Yes	69 (2)

Abbreviations: ALT, alanine aminotransferase; HBV, hepatitis B virus.

Chen et al, JAMA, 2006

Figure 2. Cumulative Incidence of Hepatocellular Carcinoma by Serum HBV DNA Level at Study Entry

All participants were seropositive for the hepatitis B surface antigen (HBsAg) and seronegative for antibodies against the hepatitis C virus. Asterisk indicates these participants were seronegative for the hepatitis B e antigen and had a normal level of serum alanine aminotransferase and did not have liver cirrhosis at study entry. HBV indicates hepatitis B virus; HCC, hepatocellular carcinoma.

Chen et al, JAMA, 2006

	No. (%) of Participants (N = 3653)	Person-Years of Follow-up	No. of Hepatocellular Carcinoma Cases	Incidence Rate Per 100 000 Person-Years	Crude HR (95%Cl)*	P Value
Sex	1000 (00)	10.007				
Female	1393 (38)	16307	29	1/8	1.0	
Male	2260 (62)	25 472	135	530	3.0 (2.0-4.5)	<.001
Age, y 30-39	1216 (33)	14393	16	111	1.0	
40-49	1014 (28)	11776	47	399	3.6 (2.0-6.4)	<.001
50-59	1058 (29)	11837	67	566	5.1 (3.0-8.9)	<.001
≥60	365 (10)	3773	34	901	8.3 (4.6-15.0)	<.001
Cigarette smoking† No	2416 (66)	28 037	90	321	1.0	
Yes	1234 (34)	13704	71	518	1.7 (1.2-2.3)	<.001
Alcohol consumption‡ No	3195 (87)	36779	121	329	1.0	
Yes	451 (12)	4928	42	852	2.6 (1.8-3.7)	<.001
Hepatitis B e antigen Seronegative	3088 (85)	35 584	94	264	1.0	
Seropositive	565 (15)	6195	70	1130	4.3 (3.2-5.9)	<.001
Level of ALT, U/L <45	3435 (94)	39469	133	337	1.0	
≥45	218 (6)	2310	31	1342	4.1 (2.8-6.0)	<.001
Liver cirrhosis§ No	3584 (98)	41 270	131	317	1.0	
Yes	<mark>69 (</mark> 2)	509	33	6482	21.8 (14.9-32.0)	<.001
Level of HBV DNA, copies/mL <300 (Undetectable)	873 (24)	10154	11	108	1.0	
300-9999	1161 (32)	13518	15	111	1.0 (0.5-2.2)	.96
10 000-99 999	643 (18)	7404	22	297	2.7 (1.3-5.6)	.006
100 000-999 999	349 (9)	3845	37	962	8.9 (4.6-17.5)	<.001
≥1 million	627 (17)	6858	79	1152	10.7 (5.7-20.1)	<.001

Abbreviations: ALT, alanine aminotransferase; CI, confidence interval; HBV, hepatitis B virus; HR, hazard ratio. *Cox proportional hazard models were used. †Data were not available for 3 participants. ‡Data were not available for 7 participants. §Diagnosed with ultrasonography within 6 months of study entry.

Direct mechanisms of HBV carcinogenesis

- Effects of viral proteins on oncogenic pathways
 - Large number of papers showing effects of HBV X and large S proteins on cell proliferation, apoptosis, sensitivity to mutagens, etc...,
 but no direct evidence from human tissue (data generated in mouse models or cell culture)

- Insertional mutagenesis
 - HBV DNA integration in cellular DNA from human HCCs first reported in 1980s
 Brechot et al, Nature, 1980; Chakraborty et al, Nature, 1980; Sharfitz et al, NEJM, 1981; Koshy, Cell, 1983
 - Consecutive studies showed that most HBV integrations are not recurrent

Whole-genome sequencing of HCCs

- WGS of 88 HCCs and adjacent nontumor liver tissue from 81 HBV-positive and 7 HBV-negative patients from China
- 399 HBV integration breakpoints detected, randomly distributed across the whole genome, with some hotspots
- 344 occurred in HCCs, 55 in non-tumor tissue
- Only few genes with recurrent integration in HCCs: TERT (18/81), MLL4 (9/81), CCNE1 (4/81)

Sung et al, Nat Genet, 2012

HCV and HCC

- HCV does not integrate in the human genome
- amongst them potential oncogenic pathways.
 - shown to
 - induce ER stress
 - oxidative stress
 - interact with p53 lacksquare
 - inhibit Rb \bullet
 - interfere with DNA damage repair
 - activate β -catenin \bullet
 - inhibit apoptosis

HCV proteins have been implicated to regulate a large number of cellular processes,

• In cell culture (mostly using overexpression systems, but also HCV infection of Huh7 cells), HCV has been

HCV and HCC

Table 2. Risk of cancer development in Japanese patients with hepatitis C (% per patient per year).			
	Degree of fibrosis		
Chronic hepatitis	Mild	(FI)	0.5
	Moderate	(F2)	1.5
	Severe	(F3)	2.6
Cirrhosis		(F4)	5.8

Hiroaki Okuda, Best Practice & Research Clinical Gastroneterology, 2007

HCV associated HCC in non-cirrhotic livers

Retrospective analysis 404 patients with histologically proven HCC diagnosed in the Cleveland Clinic between 1994 and 2007

Albeldawi et al, Dig Dis Sci, 2012

Eradication of HCV and development of HCC

- Meta-analysis of 30 observational studies
 - 18 included all stages of fibrosis
 - 12 included advanced stages of fibrosis (F3 and F4, or F4 only)
 - 31'528 patients from 17 countries
 - average length of follow-up after treatment ranged from 2.5 14.4 years
 - overall, 35% of patients achieved SVR
 - in total, 1742 patients developed HCC (5.5%)

Figure 1. Forest plot of adjusted hazard effects in persons at all stages of fibrosis.

Study, Year (Reference)	log(Hazard Ratio)	SE	Т	Total	
			SVR	NR	
		0.000	60.6	4256	
Asahina et al, 2010 (36)	-0.944	0.388	686	1356	
Hung et al, 2011 (46)	-1.423	0.273	1027	443	
Kawamura et al, 2010 (50)	-1.985	0.407	1081	977	
Kramer et al, 2011 (27)	-1.182	0.126	4292	10 276	
Kurokawa et al, 2009 (51)	-1.277	0.631	139	264	
Okanoue et al, 2002 (53)	-2.294	0.512	375	586	
Osaki et al, 2012 (50)	-2.130	1.053	185	197	
Pradat et al, 2007 (17)	-2.481	1.132	87	103	
Sinn et al, 2008 (56)	-1.246	0.596	296	194	
Takahashi et al, 2011 (57)	-3.022	1.163	89	114	
Tateyama et al, 2011 (58)	-1.968	0.537	139	234	
Yoshida et al, 1999 (61)	-1.164	0.324	789	1568	
Total			9185	16 312	
Heterogeneity: tau-square = 0.04; chi-square = 14.05; P = 0.23; I ² = 22				3; <i>1</i> ² = 22	
Test for overall effect: $Z = 10.80$: $P < 0.001$					

IV = inverse variance; NR = nonresponse; SVR = sustained virologic response.

5 March 2013 Annals of Internal Medicine Volume 158 • Number 5 (Part 1) 333

Figure 2. Forest plot of adjusted hazard effects in persons with advanced liver disease.

Study, Year (Reference)	log(Hazard Ratio)	SE	То	Total	
			SVR	NR	
Braks et al, 2007 (37)	-1.966	0.601	37	76	
Bruno et al, 2007 (38)	-0.954	0.425	124	759	
Cardoso et al, 2010 (40)	-1.120	0.514	103	204	
Hasegawa et al, 2007 (64)	-1.690	0.755	48	57	
Hung et al, 2006 (65)	-1.468	0.622	73	59	
Morgan et al, 2010 (52)	-1.721	0.764	140	309	
van der Meer et al, 2012 (63)	-1.592	0.416	192	338	
Velosa et al, 2011 (60)	-2.433	1.108	39	91	
Total			756	1893	
Hotorogonoity, tau-cause	a – 0.00. chi cauar	- 2 64.	P - 0 92.	2 - 0%	

Heterogeneity: tau-square = 0.00; chi-square = 3.64; P = 0.82; $I^2 = 0\%$ Test for overall effect: Z = 7.21; P < 0.001

IV = inverse variance; NR = nonresponse; SVR = sustained virologic response.

Morgan et al, Ann Int Med, 2013

HCV-SVR and HCC

	F3-F4	All stages of fibrosis
Number of patients	2649	25497
HCCs in patients with SVR	32 (of 756 = 4.2%)	145 (of 9185 = 1.5%)
HCCs in non-responders	337 (of 1893 =17.8%)	990 (of 16312 = 6.2%)
Absolute Risk Reduction	13.6%	4.7%
Hazard Ratio	0.23	0.24

Morgan et al, Ann Int Med, 2013

Direct versus Indirect: Existing data can not resolve the controversy

- number of infected hepatocytes (direct) but also from an increased necroinflammatory activity (indirect)
- not be convincingly proven so far
- HCCs and therefore limited significance for the human disease

Correlation of HBV viral load with HCC incidence could result from an increased

 Treatment induced inhibition of HBV or eradication of HCV could result in less direct damage to infected cells (direct) but also reduce necroinflammatory activity (indirect)

• Even with next generation sequencing -omics data, HBV insertional mutagenesis has

• All animal models of virus associated HCCs have important differences to human

HCC in the era of cancer -omics

- Compared to other common cancers, HCC -omics is years behind
- The practice of non-invasive diagnosis of HCC results in a scarcity of HCC tissue samples for research purposes
- Most published -omics data are based on resected HCCs
- As of 2016, there is no meaningful molecular classification of HCC
- meaningful = allows to recruit patients for "targeted" therapies

EASL-EORTC Clinical Practice Guidelines: Management of hepatocellular carcinoma, Journal of Hepatology 2012

Transarterial Chemoembolisation

Microspheres injected during transarterial therapy "lock in" chemotherapy.

Bruix et al, Lancet, 2002

Multikinase inhibitor: VEGFR, PDGFR RAF kinases (RAF/MEK/ERK pathway)

Sorafenib (Nexavar®)

Llovet et al, NEJM, 2008

Systemic therapy of HCC

• No conventional systemic chemotherapy has provided response rates > 25%, and none has provided improved overall survival.

fludarabine, paclitaxel, irinotecan, gemcitabine, capecitabine, tamoxifen, antiandrogens, octreotide, thalidomide (reviewed in Wörns et al, Dig Dis 2009)

• Several targeted agents have been tested in phase III trials. None was found to be superior to Sorafenib, and none was found to be active against Sorafenib resistant HCCs.

Tivantinib, Cabozantinib (reviewed in Wörns and Galle, Nat Rev Gastroenterol Hepatol 2014)

Tested drugs include: doxorubicin, cisplatin, cisplatin, 5-fluorouracil, mitoxantrone, etoposide,

Agents include: Sunitinib, Linifanib, Brivanib, Lenvatinib, Everolimus, Ramucirumab, Regorafenib,

Cancer Genomes and Driver Genes

- (Vogelstein et al, Science, 2013)
- growth advantage to the cell in which it occurs. advantage
- al, Science, 2013)

• In common solid tumors, an average of 33-66 somatic genes genes display somatic mutations that would be expected to alter their protein products

• Driver gene mutations (drivers) confer directly or indirectly a selective

Passenger mutations (passengers) have no direct or indirect effect on the selective growth

 Genome-wide sequencing studies of 3284 tumors have discovered 138 driver genes: 74 are tumor suppressor genes and 64 are oncogenes (Vogelstein et

Oncogenic signaling pathways

- All known driver genes can be classified in one or more of 12 signalling pathways
- These pathways can be be further organised into three core cellular processes:
 - Cell fate
 - Cell survival
 - Genome maintenance

Vogelstein et al, Science, 2013

Shibata and Aburatani, Nat Rev Gastro Hepatol, 2014

"Long tails"

С Т

• "For many cancer types, a handful of cancer genes are mutated at high frequency, but many more cancerrelated genes are found mutated at much lower frequencies" ("long tails")

Vogelstein et al, Science, 2013

Liver cancer genomes

- HCCs are genetically heterogeneous
- al, Nat Genet, 2012Kan et al, Genome Research, 2013; Cleary et al, Hepatology, 2013
- derived so far from genomic analysis of HCCs

• The published data are only partially overlapping, and the reason for low level of reproducibility of data are unclear (technical issues, patient selection, stochastics, small sample sizes, true heterogeneity) Li et al, Nat Genet, 2011; Huang et al, Nat Genet, 2012; Fujimoto et al, Nat Genet, 2012; Guichard et (In total, 140 samples with exome sequencing and 113 samples with whole genome sequencing)

• A molecular classification that divides HCCs in groups with distinct (and potentially drugable) oncogenic driver pathways has not been

Transcriptome based molecular classification

Boyault et al (Zucman-Rossi) Hepatology 2007

- 57 surgically resected HCC specimens
- transcriptome analysis (Affymetrix HG-U133) \rightarrow 6 groups (G1-G6)

Integrative Transcriptome Analysis Reveals Common Molecular Subclasses of Human Hepatocellular Carcinoma

Yujin Hoshida,^{1,2} Sebastian M.B. Nijman,^{1,5} Masahiro Kobayashi,⁶ Jennifer A. Chan,^{1,7} Jean-Philippe Brunet,¹ Derek Y. Chiang,¹ Augusto Villanueva,⁸ Philippa Newell,¹⁰ Kenji Ikeda,⁶ Masaji Hashimoto,⁶ Goro Watanabe,⁶ Stacey Gabriel,¹ Scott L. Friedman,¹⁰ Hiromitsu Kumada,⁶ Josep M. Llovet,^{8,9,10} and Todd R. Golub^{1,2,3,4}

- meta-analysis of gene expression profiles in data sets from eight ۲ independent patient cohorts across the world
- \rightarrow 3 robust subclasses: S1, S2, S3 \bullet
- analysis of components of the signatures indicated that \bullet
 - $S1 = activation of WNT-\beta catenin pathway$ \bullet
 - S2 = proliferation, MYC and AKT activation \bullet
 - S3 = hepatocyte differentiation \bullet

put faulter was the result of transforming growth factor-p activation, thus representing a new mechanism of WNT pathway activation in HCC. These experiments establish the first consensus classification framework for HCC based on gene expression profiles and highlight the power of integrating multiple data sets to define a robust molecular taxonomy of the disease. [Cancer Res 2009;69(18):7385-92]

Figure 4. Summary of molecular classification of HCC. Major classes (proliferation and nonproliferation) are depicted based on messenger RNA expression profiling. Additional molecular features affecting DNA structure, pathway deregulation and epigenetics are overlapped.

Zucman-Rossi, Villanueva, Nault and Llovet, Gastroenterology, 2015

Barcelona Clinic Liver Cancer (BCLC) classification

*
Stage D
, Child-Pugh C*
+
inal stage (D)
*
est supportive care
1.400/
arget: 10% OS: <3 mo

- Staging systems in HCC should define outcome • prediction and treatment assignment. They should facilitate exchange of information, prognosis prediction and trial design. Due to the nature of HCC, the main prognostic variables are tumor stage, liver function and performance status
- The BCLC staging system is recommended for ٠ prognostic prediction and treatment allocation (evidence 2A; recommendation 1B). This staging system can be applied to most HCC patients, as long as specific considerations for special subpopulations (liver transplantation) are incorporated
- Refinement of BCLC class C by clinical or biomarker ٠ tools should further facilitate understanding of outcome data and trial stratification
- Other staging systems applied alone or in combination ٠ with BCLC are not recommended in clinical practice
- Molecular classification of HCC based on gene ٠ signatures or molecular abnormalities is not ready for clinical application (evidence 2A; recommendation 1B)

EASL-EORTC Clinical Practice Guidelines: Management of hepatocellular carcinoma, Journal of Hepatology 2012

Shortcomings of the existing molecular classification systems

Selection Bias

Sample Preparation/Quality

US-guided liver biopsy procedure

- - Statistical analysis with Bioconductor/R and javaGSEA

- 60 patients with HCC included from 2002-2012
- Biopsies of tumor and non-tumor liver
- Transcriptome analysis with Affymetrix Human Gene ST 1.0 microarrays

Consensus clustering of gene expression profiles

Z-score values show standard deviations from the mean expression value

Makowska et al, J Pathol Clin Res, 2016

Overlaps between different classification systems

Conclusion:

- Despite the differences in sample handling and processing and in tumor stage distribution in the study populations, most samples can be assigned to the classes of published classification systems with high confidence
- This demonstrates the usefulness of gene expression data from surgical resection specimens
- But once again the consensus between the classification system is limited, highlighting the important problem of lack of reproducibility between different classification systems

A second look at consensus clustering

Z-score values show standard deviations from the mean expression value of HCC samples

Z-score values show standard deviations from the mean expression value of 5 healthy liver control samples

Quantitative rather than qualitative differences of gene expression define the clusters

mRNA expression profiling of HCCs

- Several classification systems published, but no consensus
- oncogenic driver pathways
- The added value of transcriptome analysis over classical immunostaining for Ki67 is not known

• None of the systems identifies meaningful subgroups with distinct

histopathological grading and quantification of cell proliferation with

Mutations in Oncogenes and Tumor Suppressor Genes

Copy number alterations of Oncogenes and Tumor Suppressor Genes

Intra- and inter- chromosomal rearrangments

Epigenetic Drivers Oncogenic Signaling Pathways:

TP53-Rb Wnt-βCatenin Akt/mTor Map kinase Jak-Stat Oxidative Stress Notch TGFβ Ras

- Exome sequencing
- Whole genome sequencing
- Genome-wide DNA methylation analysis

• Phosphoproteomics

Phosphoproteomics with HCC biopsies

Dazert et al, PNAS, 2016

PNAS

Quantitative proteomics and phosphoproteomics on serial tumor biopsies from a sorafenib-treated HCC patient

Eva Dazert^a, Marco Colombi^a, Tujana Boldanova^b, Suzette Moes^a, David Adametz^c, Luca Quagliata^d, Volker Roth^c, Luigi Terracciano^d, Markus H. Heim^b, Paul Jenoe^a, and Michael N. Hall^{a,1}

^aBiozentrum, University of Basel, 4056 Basel, Switzerland; ^bDepartment of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland; ^cDepartment of Mathematics and Computer Science, University of Basel, 4051 Basel, Switzerland; and ^dMolecular Pathology, University Hospital Basel, 4003 Basel, Switzerland

Outlook

- Molecular characterisation of a HCCs by integrating genomic, data
- Generation of patient derived cell culture models

transcriptomic, proteomic, phosphoproteomic, and metabolomic

• Generation of patient derived xenograft mouse models (PDX mice)

ncer
sm
oitors
ns
oint
S

Hepatology Laboratory,

<u>Department Biomedicine,</u> <u>University of Basel</u>

Tanja Blumer Tujana Boldanova

Diego Calabrese Benedetta Campana Mairene Coto Francois Duong Isabel Fofana Sylvia Ketterer Sandro Nuciforo Aleksei Suslov Stefan Wieland

Christine Bernsmeier Michael Dill Magdalena Filipowicz Zuzanna Makowska GaiaTrincucci

European Research Council

Collaborators

Institute for Pathology Luigi Terracciano Luca Quagliati Mathias Matter

<u>Department of Mathematics and</u> <u>Computer Science</u> Volker Roth Julia Vogt David Adametz

Department of Biomedicine Gerhard Christofori

> <u>Biozentrum</u> Michael N. Hall Eva Dazert Marco Colombi

ETH Zürich, D-BSSE Niko Beerenwinkel

