

UniversityHospital Heidelberg

The Hepatitis B Virus Life Circle: Achievements and Challenges

Stephan Urban, Prof. Dr. rer. nat.

University Hospital Heidelberg, Department of Infectious Diseases, Molecular Virology, Heidelberg, Germany

The global burden of Hepatitis B Virus (HBV) infection

- World wide ~2 billion people carry serological markers (HBsAg, anti-HBc) related to HBV infection.
- 400 million are chronically infected with HBV (~ 170 million with HCV).
- * ~ 1 million die (HBV-related liver cirrhosis, hepatocellular carcinoma (HCC)).
- currently there are no curative treatment options for chronic HBV infections; vaccination for prevention

Highly endemic regions :

South East Asia, China, Central Africa. Risk of infection > 60% vertical transmission to children

Areas with medium endemicity:

South- Eastern Europe, Middle East, Northern Africa, Japan, Mesoamerica, Russia. Risk of infection 20-60%

Low prevalence areas:

Northern America, West Europe, Australia, Parts of South America. Risk of infection < 20% (horizontal transmission, sexual contacts)

Hepatitis B virions and subviral particles

Seitz et al., EMBO J., 2007

HBV forms different types of infectious and non-infectious particles

- 10⁴-10¹⁰/ml infectious virions of 42-47 nm diameter with nucleocapsid (1)
- Long and short nucleocapsid-free filaments; 22-25 nm in diameter (2)
- spherical, nucleocapsid-free particles with 22-25 nm diameter (3);
- SVPs are synthesized in huge excess over virions \Rightarrow HBsAg = SVPs (mostly spherical particles)

Hepatitis B Virus Genome organization and particle morphology

HBV encodes seven proteins in a partially double stranded highly overlapping genome ("zip-genome")
efficacy of transcription depends on liver-specific transcription factors (contributes to liver specificity)
HBx, a regulatory viral protein controls transcription of viral mRNAs from cccDNA

*Yan et al, eLife, November 2012

Urban et al., J. Hepatology, 2010

Formation of cccDNA in the establishment of HBV infection

• cccDNA is synthesized de novo from incoming virus....(this pathway is not blocked by RTinhibitors)

•or after reimport of newly formed mature (!) rcDNA-containing nucleocapsids ("amplification")

•cccDNA formation depends on the activity of cellular DNA-repair enzymes (most are unknown)

- There are no drugs that target and destroy cccDNA directly (innovative approach; site specific nucleases)
- cccDNA stability is assumed to be stable in resting (!) hepatocytes
- the ultimate goal of therapy is cccDNA "eliminiation" and HBsAg seroconversion.

Approved therapies with nucleoside analogues are efficient in the suppression of viremia but generally non-curative – Why?

Nucleoside analoges: (Lamivudine, Adefovir, Entecavir, Telbivudine, Tenofovir)

- \Rightarrow fast and efficient suppression of viral titers in the serum, preventing disease progression but:
- \Rightarrow only slow reduction of HBsAg titers during therapy
- ⇒ development of resistant mutants with some drugs (e.g. Lamivudine, Adefovir, Entecavir)
- \Rightarrow naiive hepatocytes establish cccDNA in the presence of NUCs
- ⇒ undetectable serum levels don^t necessarily mean complete virus suppression
- \Rightarrow More than 5x10e6 receptor molecules/hepatocyte (high virus binding capacity of the liver)
- ⇒ Novel intrahepatic infections of hepatocytes might occur even under strong virus suppression

cccDNA clearance in the course of a natural infection

cccDNA is regularly cleared following acute infection of immun-competent individuals

⇒ In contrast to retroviral infections where genome integration is mandatory for virus replication and inherited to daughter cells the episomal cccDNA can become eliminated from hepatocytes

How can cccDNA be cleared in the course of a natural infection?

The current view:

(1) Killing (apoptosis) of infected hepatocytes

adopted from Anna S.F. Lok, EASL Monothematic conference 2005

cccDNA depletion under NT-therapy depends on the number of cccDNA molecules/cell..

the half-life time of infected hepatocytes....

the rate of de-novo infection of naive or cleared hepatocytes under therapy.....

...and would probably take decades.....

Hypothesis based on the assumption that cccDNA survives cell division !

HepaRG cells to study the authentic cccDNA-based HBV replication cycle in vitro

Rapid loss of intracellular HbcAg-expression following cell splitting.....

How is reimport of nucleocapsids regulated in HBV infected cells?

Conclusions and clinical consequences

- HBV infected hepatocytes support superinfection and replication of HDV (⇒ not surprising).
- HBV infected hepatocytes support HBV entry but prevent nucelocapsid import and de novo cccDNA formation (unexpected).
- The presence of the L-protein is sufficient to compromise infection.
- Therapeutical implications: Entry inhibition and the induction of hepatocyte proliferation might be a key for curative therapies.

A determinant in the preS1 region required for HBV entry

Le Seyec et al. Infection process of the hepatitis B virus depends on the presence of a defined sequence in the pre-S1 domain. J Virol. (1999) 73(3):2052-7.

Gripon et al. *Myristoylation of the hepatitis B virus large surface protein is essential for viral infectivity.* Virology (1995) 213(2):292-9.

A synthetic peptide derived from the large envelope protein of HBV blocks HBV infection in HepaRG cell culture....

Fine mapping of the sequence requirements for HBV infection inhibition: Definition of Myrcludex B as a lead substance for clinical development

A transplanted mouse model to study in vivo infection of HBV

Transplantation of uPA/RAG-2 mice with primary human hepatocytes (PHH)

Uwe Haberkorn², Lutz Fischer⁴, Joerg-Matthias Pollok⁴, Berit Erbes⁵, Stefan Seitz⁵ & Stephan Urban⁵

Nat Biotechnol., 26:335-341 (2008)

Petersen et al., Nat Biotechnol., 26:335-341 (2008)

Why is s.c. administration of HBVpreS/2-48^{myr} so efficient?

Myrcludex B accumulates in the liver of mice after i.v. injection

conserved domain

StearoyI-GQNLSTSNPLGFFPDHQLDPAFRANTANPDWDFNPNKDTWPDANKVGy-I¹²⁵

Schieck et al., Hepatology 2013

A single amino acid exchange in the highly conserved receptor binding site abolishes peptide hepatotropism and liver accumulation

- GMP-production of 100g Myrcludex B accomplished (stability studies successful)
- Long term toxicity studies successfully completed without drug related side effects
- Single dose and PK studies in 3 chimpanzees completed (liver targeting confirmed)
- Approval by the BfArM for Phase 1a clinical trial in healthy volunteers (May 2011)
- Successful completion of the single dose escalating phase 1 study (24 individuals) in February 2012
- Start of a multiple dose s.c. Phase Ib study and a phase IIa efficacy study in November 2012.
- Search for a pharmaceutical company for further product development

Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus

Huan Yan^{1,2†}, Guocai Zhong^{2†}, Guangwei Xu², Wenhui He^{2,3}, Zhiyi Jing², Zhenchao Gao^{1,2}, Yi Huang^{2,3}, Yonghe Qi², Bo Peng², Haimin Wang², Liran Fu^{2,3}, Mei Song^{2,3}, Pan Chen^{2,3}, Wenqing Gao², Bijie Ren², Yinyan Sun², Tao Cai², Xiaofeng Feng², Jianhua Sui², Wenhui Li^{2*}

¹Graduate program in School of Life Sciences, Peking University, Beijing, China; ²National Institute of Biological Sciences, Beijing, China; ³Graduate program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Summary, conclusion and outlook

- Future therapeutic approaches should aim at eliminating cccDNA, the key regulator of HBV replication
- cccDNA clearence is possible and can be achieved by several means
- HBV cccDNA is not efficiently propagated to progeny cells after induction of hepatocyte division.
- Control of cccDNA might be obtained by a sustained combination of induced cell proliferation and entry inhibition
- Myrcludex B a first in class entry inhibitor of HBV/HDV currently in phase IIa trial will help to clinically prove that concept
- Novel NTCP-based cell culture systems will accelarate future drug development including those that directly target cccDNA
- NTCP-addressing HBVpreS-peptides are useful vehicles for liver specific drug targeting

Possible applications for HBV preS-lipopetide-mediated drug delivery

• imaging of liver diseases

- targeted HBV therapies (e.g. Entecavir, Adefovir ...)
- targeted HCV therapies (e.g. Protease inhibitors, polymerase inhibitors..)
- targeted therapies for hepatocellular carcinoma (HCC) (e.g. apoptosis induction, inhibition of angiogenesis, kinase inhibitors Sorafenib)
- •targeted Malaria therapies (e.g. primaquine)
- delivery of peptides for hepatocyte-specific antigen presentation
- •delivery of siRNAs by hepatotropic liposomes or nanoparticles (e.g. metabolic diseases, infections...)
- targeted Interferon therapies to avoid side effects (chronic Hepatitis B, C)

Positron emission tomography (PET) of an intravenously injected HBV unrelated ⁶⁸Ga-labeled peptide in a rat

BB_948_R1_Ga68_0-1h_Emiss_Ga68_3600_em_v1.pet

BB_948_R1_Ga68_0-1h_Emiss_Ga68_3600_em_v1.pet Jun 12, 2008

Positron emmission tomographie (PET) of intravenously injected ⁶⁸Ga-labeled lipopeptide into a rat

Walter Mier Alexa Schiek Isabell Janza Thomas Müll<u>er</u>

Stefanie Held Matthias Engelke Stefan Seitz Kerry Mills Berit Lange Andreas Schulze Caroline Gähler Yi Ni Anja Meier Martina Spille Christa Kuhn

Stefan Mehrle

Jessica Sonnabend

Thank you for your attention and thanks to:

- Philippe Gripon, INSERM U522, Rennes
- Alexander Alexandrov, previously Vision 7 GmbH, now Myr- GmbH
- Robert Lanford, Texas, USA
- Heiner Wedemeyer, MH Hannover
- Ulrike Engel, Christian Ackermann, Nikkon Imaging Center, HD
- Thomas Weiss, University Clinics Regensburg
- Karin Leotta, DKFZ

Ralf Bartenschlager Heinz Schaller

- DFG, EU, WHO, Landesstiftung Baden Württemberg
- Kompetenznetz Hepatitis
- BMBF Innovative Therapieverfahren
- DZIF (deutsches Zentrum für Infektionsforschung)