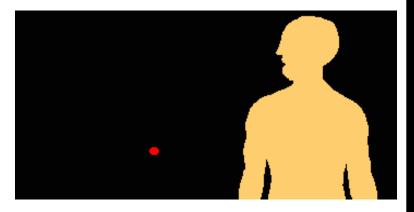

Prof François Bochud Institut de radiophysique (IRA) UNIL / CHUV

Chapter 4. Personal radiation protection monitoring

Parameters monitored

 E_{50}

- Hp(10) & Hp(0.07)
- H_{ext}


 similar to H(0.07) but measured at the hands or fingers

Hp, H_{ext}, E₅₀ **above the limits**: inquiry & estimation

limits

Hp, H_{ext}, E₅₀ **below the limits**: directly defines E

Personal radiation protection monitoring

External irradiation

External measurement techniques

 Integrating dosimeters carried on the chest (badges)

 Integrating dosimeters worn near the hands (rings)

• Direct read or alarm dosimeters

Badge dosimeter

- Many numerical requirements
 - see text (Ordinance on dosimetry)
- Dosimetry services
 - should have official approval
 - dosimetric intercomparison once a year
- Monthly measurements
 - however, immediate reading is possible
- With a protective apron
 - 1 dosimeter: should be worn under the apron
 - 2 dosimeters: one under & one above the apron

$$H_{p}(10) = H_{p,underp}(10) + aH_{p,above}(10)$$
$$H_{p}(0.07) = H_{p,under}(0.07) + aH_{p,above}(0.07)$$

a=0.05 or 0.1

Estimation of the dose with an apron

• Exercise 1

1. Indicate the dose to record on the dosimetric document if two dosimeters (one under the apron and the other over it) give the following values:

 $H_{under} = 0.4 \text{ mSv}$; $H_{over} = 2 \text{ mSv}$.

Ring dosimeters

 Generally a thermoluminescent dosimeter

placed inside a ring

- Measures the dose received by the hands
 supposed to estimate the highest dose
- Condition for wearing such a dosimeter
 possible to receive H_s > _____mSv/y

Direct read dosimeters or alarm

- When risk is present or poorly understood
 - badge is combined with a direct-read instrument
- Currently only used in high dose rate situations
- Advantages of electronic dosimeters:
 - good precision
 - good exactitude
 - good detection limit
 - visual and audible alarms
 - dose and dose rate function
 - easy transfer of dosimetric information
 - good acceptability with users
 - more confidence values received immediately

Direct read dosimeters or alarm

Drawbacks

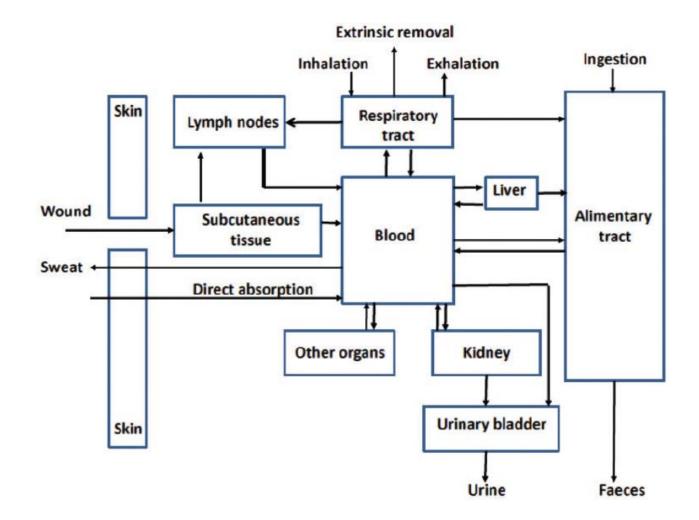
- absence of national or international industrial standards
- reticence of monitoring bodies toward these "new" dosimeters
- relatively high price
- underestimation of dose at high rates (some Gy/h)
 - dead time
 - problem in an accident situation
- electromagnetic interference
- difficulty in measuring surface dose
- lack of dosimeter for extremities

Personal monitoring for **external** contamination

- With open sources
 - Monitoring of skin and clothing contamination
- Instrument shared by the co-workers
- If positive result (> CS)
 - cleaning
 - change clothing
- until activity is reduced below
 - the tolerated threshold
- Doses are difficult to estimate and quite low
 - Not calculated, not taken into consideration

Personal radiation protection monitoring

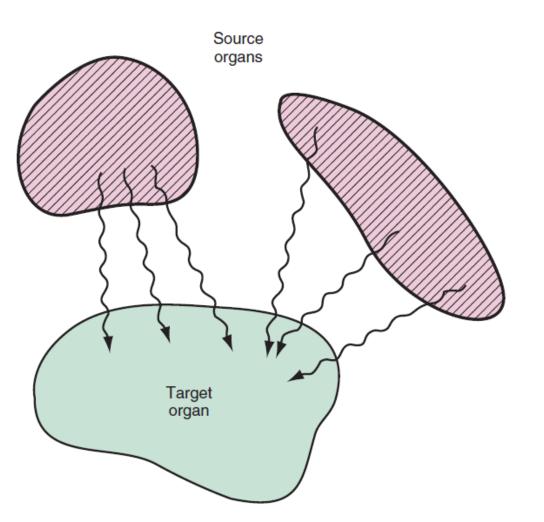
Internal contamination



Personal monitoring for **internal** contamination

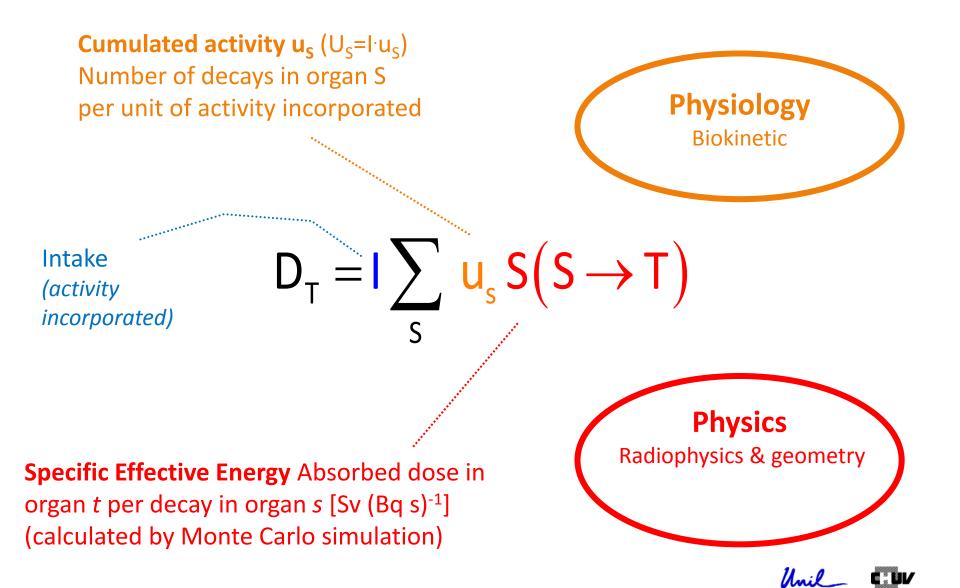
- Difficult to estimate the dose directly
 - It involves
 - physical parameters of the radionuclide
 - chemical characteristics
 - metabolization in the body
- In practice, incorporation is measured indirectly and compared to secondary limits
 - by determining the activity
 - in the entire organism
 - in an organ
 - by measuring activity in the feces or urine

Origin of internal contamination


Summary of the main routes of intake, transfer, and excretion of radionuclides in the body

Origin of internal contamination

FIGURE 22-1 Absorbed dose delivered to a target organ from one or more source organs containing radioactivity is calculated by the absorbed fraction dosimetry method.


The irradiation can come from **other organs** or from **the organ itself**

Cherry, Sorenson, Phelps, Physics in Nuclear Medicine, Sauders Elsevir, 2012

Absorbed dose in an organ T (D_T)

S factor (specific effective energy)

The energy emitted from an organ *S* and deposited in an organ *T* is computed by Monte Carlo simulation within a 3D phantom

$$S(S \rightarrow T) = \sum_{R} \frac{Y_{R} \varepsilon_{R} AF(S \rightarrow T)_{R}}{m_{T}}$$

- R : radiation R
- Y_R: yield of radiation R [(Bq s)⁻¹]
- ϵ_R : energy of radiation R [J]
- $AF(T \rightarrow S)$: fraction of radiation R absorbed in T per decay in S
- m_T : mass of organ T [kg]

Transport of energy from organ S to organ T is computed by **Monte Carlo simulation**

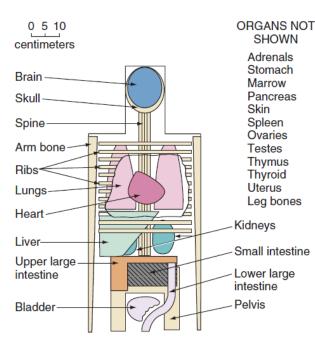
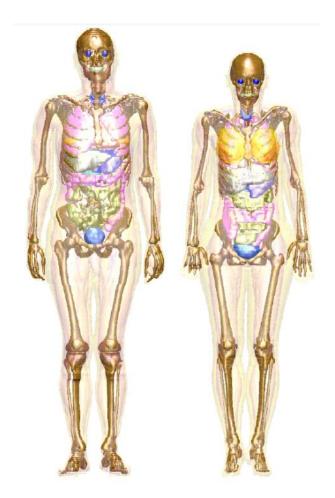
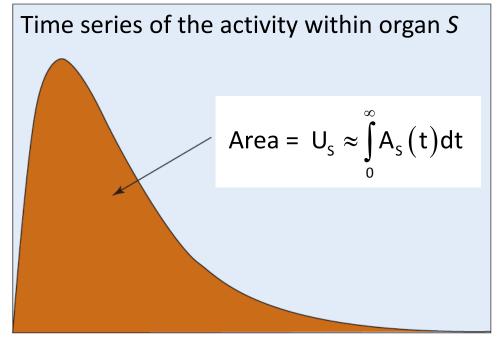
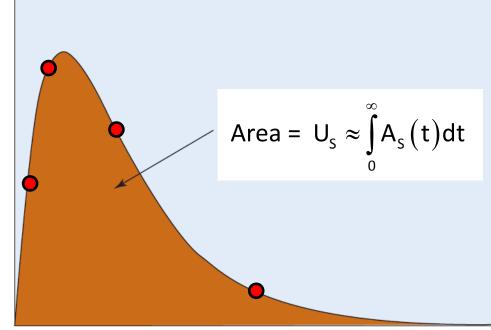



FIGURE 22-5 Representation of an "average man" used for MIRD dose calculations and tables. (Adapted with permission from Snyder WS, Fisher HL Jr, Ford MR, Warner GG: Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogenous phantom. J Nucl Med Suppl 3:9, 1969.)



ICRP-110 voxel phantoms

U_s: Cumulated activity

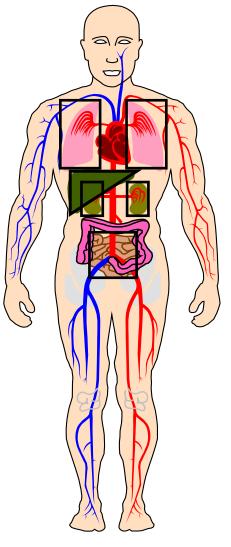

Time (sec)

The **cumulated activity U**_s is the **total number of decays** within an organ S

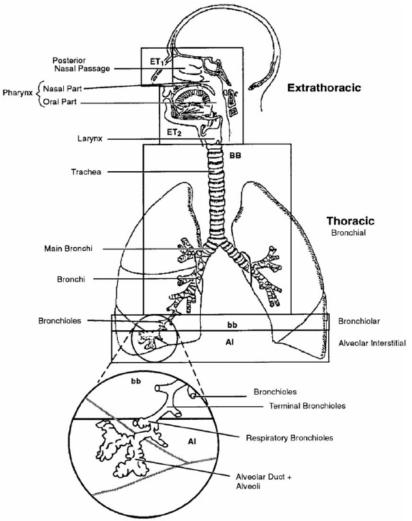
Cherry, Sorenson, Phelps, Physics in Nuclear Medicine, Sauders Elsevir, 2012

U_s can be estimated **from direct measurements** in nuclear medicine

Time (sec)


quantitative SPECT imaging performed **at different times** allows us to estimate U_s

Cherry, Sorenson, Phelps, Physics in Nuclear Medicine, Sauders Elsevir, 2012


U_s can be **computed** with **compartmental biokinetic models**

- Organism divided in sub-systems
 - Compartments
 - (Instantaneously) homogenous
- Continuous transfer of the substance between these sub-systems
- Flux from one compartment to the other
 - Proportional to the source
 - Constant rate λ
 - Probability of transfer per unit of time

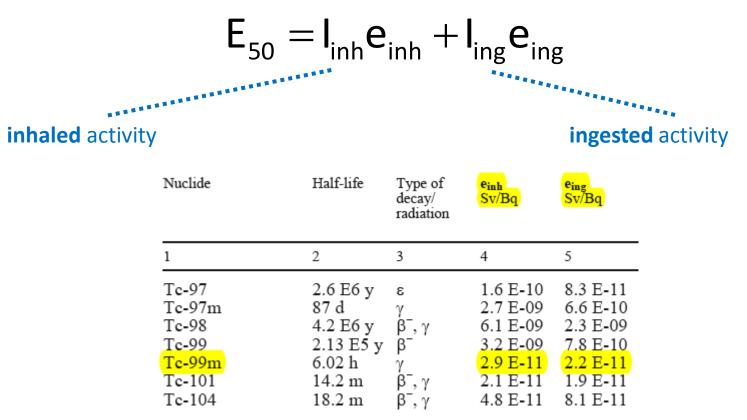
Example of a compartmental biokinetic model

HRTM (human respiratory tract model) ICRP-66

Committed effective dose E₅₀

$$H_{50,T} = I \sum_{S} u_{S} S(S \rightarrow T)$$

equivalent dose to the organ T


$$S(S \rightarrow T) = \sum_{R} \frac{W_{R}Y_{R}\epsilon_{R}AF(S \rightarrow T)_{R}}{m_{T}}$$

$$E_{50} = \sum_{T} W_{T} H_{50,T} = I \sum_{T} W_{T} \sum_{S} u_{S} S(S \rightarrow T)$$

committed effective dose
 e_{inh} or e_{ing}

Simple computation in the Swiss federal ordinance of radiation protection

Based on compartmental biokinetic models, E₅₀ can be easily computed in case of ingestion and inhalation

Known activity

• Exercise

– A person ingests 300 kBq of Tc-99m

- 1/1000 of a typical examination activity
- What is the committed effective dose E_{50}

A person ingests 300 kBq of IC-99m			99m	
Nucléide	Période	Type de désintégra- tion/ de rayonnement	e _{inh} Sv/Bq	e _{ing} Sv/Bq
1	2	3	4	5
Tc-99 <mark>Tc-99m</mark> Tc-101 Tc-104	2.13 E5 a 6.02 h 14.2 m 18.2 m	β ⁻ γ β ⁻ ,γ β ⁻ ,γ	3.2 E-09 2.9 E-11 2.1 E-11 4.8 E-11	7.8 E-10 2.2 E-11 1.9 E-11 8.1 E-11

A norcon ingosts 200 kBg of To 00m

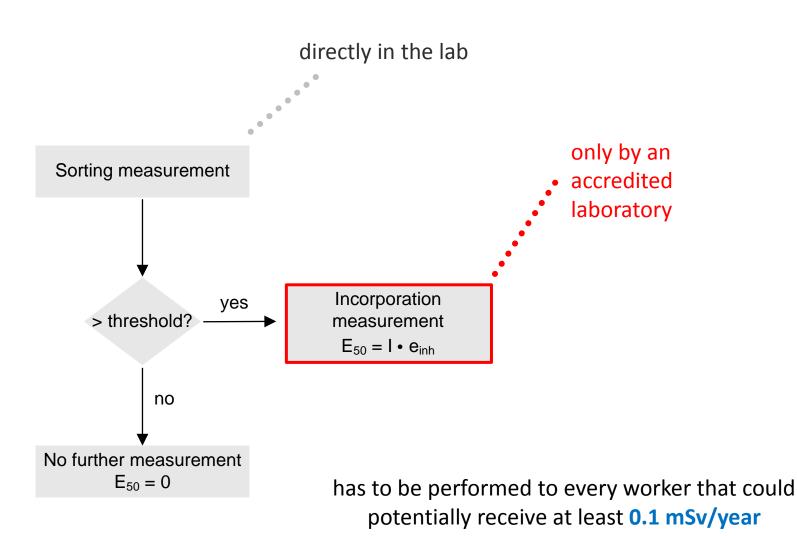
uniboard

In vivo measurement

• gamma emitters

WBC

thyroid measurement



In vitro measurement

Measurement procedure

Measurement intervals

• Depends on

- effective half-life of the radionuclide
- detection limit of the instrument
- In practice
 - the incorporation occurred in the interval between 2 measurements
 - measurement interval defined as
 - no underestimation nor overestimation of a factor 3
 - exception
 - actinide incorporation
 - » detection limit too high

Swiss ordinance on dosimetry

27. I-131

27.1. Métabolisme

L'iode inhalé (classe d'absorption type F) est exhalé à 50 %. L'autre moitié atteint rapidement la circulation sanguine (taux de résorption $f_1 = 1$). De là environ 30 % est résorbé en 1 jour dans la glande thyroïde et 70 % est éliminé par voie urinaire. La période biologique dans la glande thyroïde est de 80 jours. La durée de séjour de l'iode-131 dans la thyroïde est ainsi déterminée par sa période physique de 8 jours.

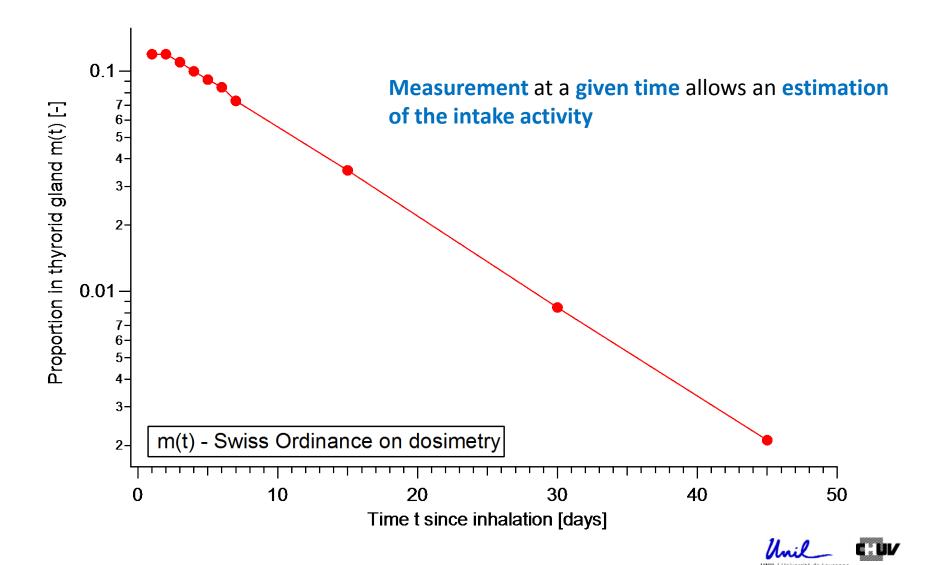
27.2. Méthodes de mesure

Mesure de tri

Mesure directe de l'activité fixée dans la glande thyroïde avec un moniteur de contamination.

Seuil de mesure: 2000 Bq

Mesure d'incorporation


Mesure à l'aide d'un moniteur thyroïdien de l'activité de I-131 M en Bq.

27.3. Intervalles de surveillance T et laps de temps t entre l'événement et la 1^{re} mesure

T_{tri} : 7 jours T_{mesure} : 30 jours $t_{événement}$:	6–12 h
---	--------

lodine (131) in the thyroid

$E_{50} =$	$M \cdot \{e_{inh}/m(t)\}$	t [jour]	einh/m(t) [Sv/Bq]
		1	0,092×10-6
E50:	Dose engagée durant 50 ans en Sv	2	0,092×10-6
M :	Valeur de mesure en Bq	3	0,10×10-6
e _{inh} :	Facteur de dose en Sv/Bq	4	0,11×10-6
m(t) :	Fraction de rétention	5	0,12×10-6
t:	Laps de temps entre la mesure et l'incorporation en jours.	6	0,13×10 ⁻⁶
	Lorsque le moment de l'incorporation est inconnu, on pose $t = T/2$	7	0,15×10-6
	Intervalle de surveillance = 30 jours	15	0,31×10 ⁻⁶
		30	1,3×10 ⁻⁶
		45	5,2×10-6

27.4. Interprétation sans tenir compte d'une incorporation antérieure

27.5. Correction pour une incorporation antérieure

Intervalle de surveillance T = 30 jours:	$E_{50} = M \cdot 0.31 \cdot 10^{-6} - E_{50}^{a} \cdot 0.06$
--	---

Incorporation of I-125

- Exercise 4
 - Calculate the committed effective dose received by an individual who has an lodine-125 activity of 2 MBq in the thyroid gland during a quarterly exam

Incorporation of I-125

• Exercise

Calculate the committed effective dose received by an individual who has an lodine-125 activity of 2
MBq in the thyroid gland during a quarterly exam

• Answer

$E_{50} =$	$M \cdot \{e_{inh}/m(t)\}$	t [Tage]	e _{inh} /m(t) [Sv/Bq]
		1	0,56×10-7
E50:	50-Jahre-Folgedosis in Sv	2	0,52×10-7
M:	Messwert in Bq	3	0,52×10 ⁻⁷
e _{inh} :	Dosisfaktor in Sv/Bq	4	0,56×10-7
m(t):	Retentionsanteil	5	0,56×10-7
t: Tage zwischen Messung und Inkorporation. Bei unbekanntem Inkorporationszeitpunkt ist		6	0,56×10-7
	Bei unbekanntem Inkorporationszeitpunkt ist t = $T/2$	7	0,56×10-7
		15	0,66×10-7
		30	0,90×10-7
	Überwachungsintervall T = 90 Tage	45	1,2×10-7
		60	1,6×10-7
		90	2,6×10-7
		135	6,1×10-7

 $E_{50} = 2 \ 10^6 \ x \ 1.2 \ 10^{-7}$ = 0.24 Sv = **240 mSv**

Incorporation of tritium

- Exercise
 - A person is chronically contaminated with tritium
 - The last monthly control shows an activity concentration of 500 kBq/l
 - What is the committed effective dose?

Incorporation of tritium

• Exercise

- A person is chronically contaminated with tritium
- The last monthly control shows an activity concentration of 500 kBq/l
- What is the committed effective dose?

• Answer

E ₅₀ =	$C_{u} \cdot \{e_{inh}/m(t)\}$	t [Tage]	e _{inh} /m(t) [Sv·l/Bq]
		1	0,78×10-9
E50:	50-Jahre-Folgedosis in Sv	2	0,86×10 ⁻⁹
Cu:	Messwert in Bq/l	3	0,90×10 ⁻⁹
e _{inh} :	Dosisfaktor in Sv/Bq	4	0,95×10 ⁻⁹
m(t):	Ausscheidungsanteil im Tagesurin (=1,4 l) in l ⁻¹	5	1,1×10 ⁻⁹
t:	Tage zwischen Messung und Inkorporation. Bei unbekanntem Inkorporationszeitpunkt ist t = T/2	6	1,1×10-9
	Bei unbekanntem Inkorporationszeitpunkt ist t = T/2	7	1,2×10 ⁻⁹
	Überwachungsintervall T = 30 Tage	15	2,0×10 ⁻⁹
		30	5,3×10 ⁻⁹
		45	13×10-9

$$E_{50} = 500 \ 10^3 \ x \ 1.4 \ 10^{-9}$$

= 0.0007 Sv = **0.7 mSv**

5. Interpretation für dauernde Inkorporation

Überwachungsintervall T = 30 Tage: $E_{50} = C_u \cdot 1, 4 \cdot 10^{-9}$ (Sv pro Überwachungsintervall)

Monitoring program for tritium

• Exercise 2

2. Indicate a monitoring program for an individual working with an open source of Tritium.

Anthropogammametric measurement of Co-60

• Exercise 5

 We measure an activity of 5 MBq of Cobalt-60 during an anthropogammametric exam. Estimate the dose if we say the intake occurred three months previously

Anthropogammametric measurement of Co-60

• Exercise

 We measure an activity of 5 MBq of Cobalt-60 during an anthropogammametric exam. Estimate the dose if we say the intake occurred three months previously

• Answer

E50 =	$M \cdot \{e_{inh}/m(t)\}$	t [jour]	einh/m(t) [Sv/Bq]
		1	0,35×10 ⁻⁷
E50:	Dose engagée durant 50 ans en Sv	2	0,68×10 ⁻⁷
M:	Valeur de mesure en Bq	3	1,2×10 ⁻⁷
e _{inh} :	Facteur de dose en Sv/Bq	4	1,7×10 ⁻⁷
m(t):	Fraction de rétention	5	2,1×10-7
t:	Laps de temps entre la mesure et l'incorporation en jours.	6	2,3×10-7
	Lorsque le moment de l'incorporation est inconnu, on pose $t = T/2$	7	2,5×10-7
	pose t = 1/2	15	2,8×10-7
		30	3,1×10-7
		60	3,8×10 ⁻⁷
	Intervalle de surveillance T = 180 jours	90	4,3×10 ⁻⁷
		180	5,3×10 ⁻⁷
		270	6,1×10 ⁻⁷

 $E_{50} = 5 \ 10^6 \ x \ 4.3 \ 10^{-7}$ = 2.15 Sv

5. Correction pour une incorporation antérieure

Intervalle de surveillance T = 180 jours:	$E_{50} = M \cdot 4.3 \cdot 10^{-7} - E_{50}^a \cdot 0.70$
---	--

Monitoring program for technetium

• Exercise 6

6. Imagine a monitoring measurement for the intake of Technetium-99m.

If the limit is exceeded

- A specific determination of the dose must be conducted, taking the specific situation into consideration
 - supposed moment of incorporation
 - individual's specific metabolism
 - specific incorporation path
 - chemical properties of the radioelement
- Has to be carried out by an expert
 - who will conduct an inquiry
 - and perform additional measurements

Medical monitoring

- This has just been canceled • At the beginning of the activity
- Periodically, according to a schedule defined by SUVA
 - usually every two years for situations involving a high risk of irradiation
 - when risk is low, "periodic" monitoring is advised
- Performed exams
 - complete blood work up
 - not expected to observe symptoms linked to radiations
 - (only deterministic effects could be seen)

Personal dosimetric document

- Each individual professionally exposed to radiation has a personal dosimetric document
 - The received doses are indicated
- This document
 - contains the doses received
 - is updated by the employer
 - is given to the individual when they leave their place of employment
 - is given to the new employer

