

Carotid endarterectomy and stenting

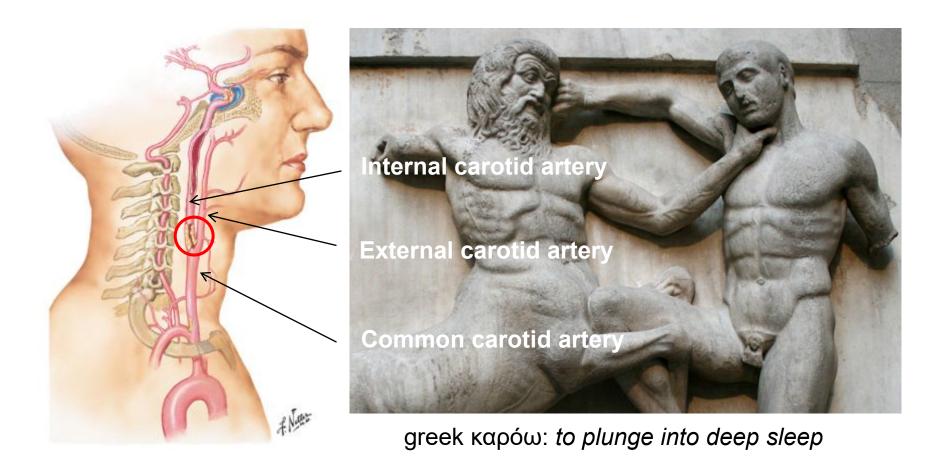
Symposium annuel, Centre cérébrovasculaire CHUV Lausanne, 22.9.2022

Prof. Dr. med. Leo Bonati Medical Director Reha Rheinfelden Consultant, Department of Neurology, University Hospital Basel I.bonati@reha-rhf.ch

Disclosures

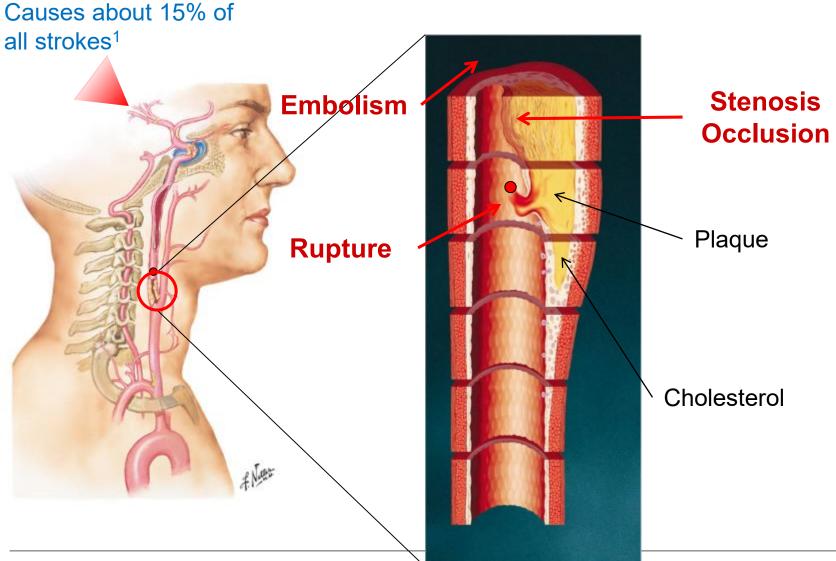
- Travel, advisory boards, consultancy: Bayer, Amgen, Claret Medical
- Investigator-initiated research grant: AstraZeneca
- Member of the International Carotid Stenting Study Group (ICSS)
- Steering Committee Member of the 2nd European Carotid Surgery Trial (ECST-2)
- Co-Principal Investigator of the 2nd Asymptomatic Carotid Surgery Trial (ACST-2)
- Principal Investigator of the PRECISE-MRI Study (ticagrelor versus aspirin in carotid artery stenting)
- Steering Committee Member of the Carotid Stenosis Trialists Collaboration (CSTC)

Lecture outline

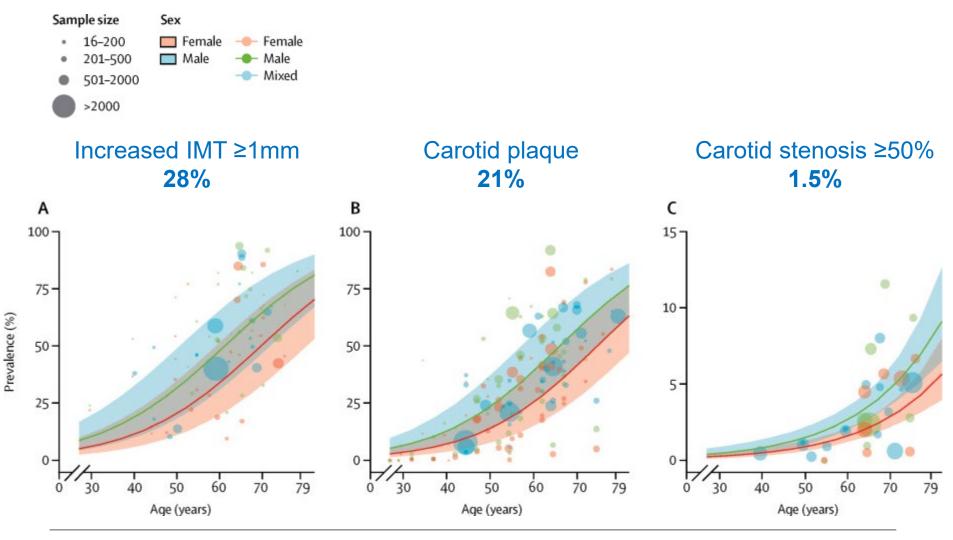

Epidemiology and pathophysiology of carotid stenosis Endarterectomy and stenting for carotid stenosis

- Symptomatic carotid stenosis
- Asymptomatic carotid stenosis

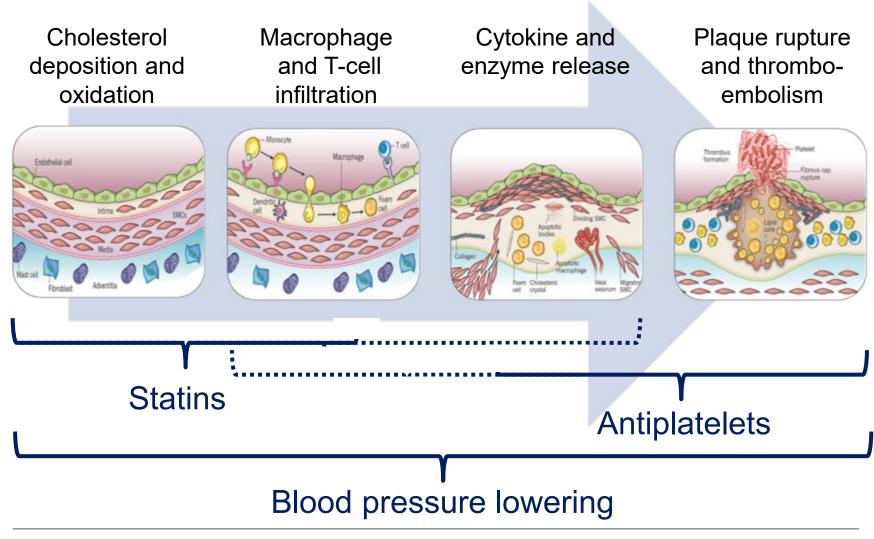
Patient selection: role of plaque imaging

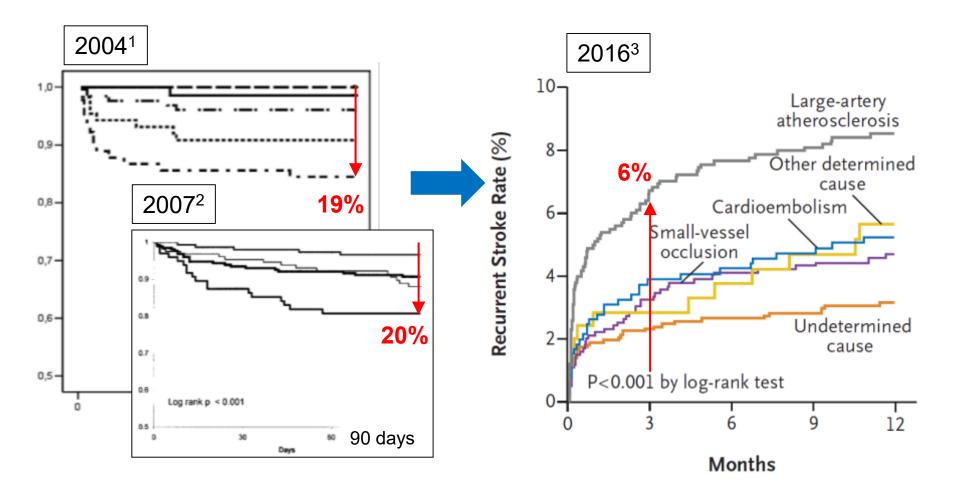

Management recommendations: ESO Guideline

Parthenon sculptures, 447 – 438 B.C. The British Museum


Carotid artery disease: pathophysiology and stroke mechanism

1) GW Petty et al. Stroke. 1999;30:2513-2516

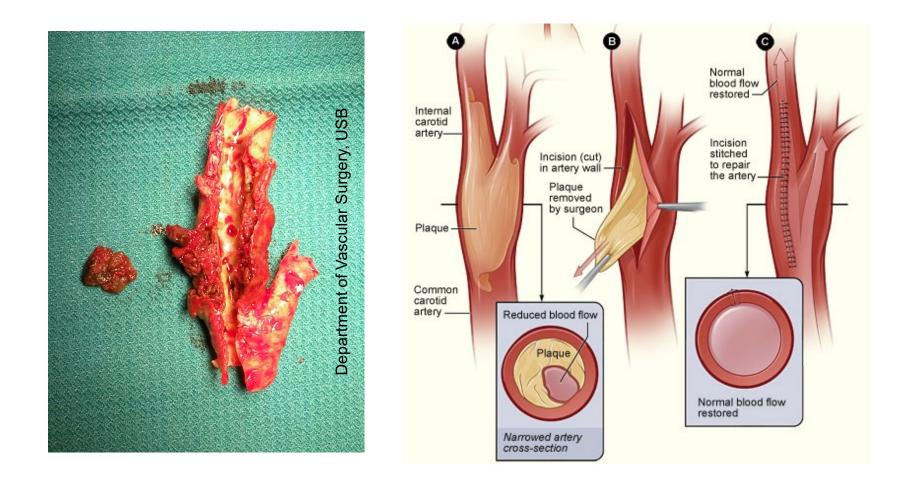

Global prevalence of carotid disease in people aged 30-79 years


P Song et al., Lancet Glob Health. 2020 May;8(5):e721-e729.

⁻ Universitätsspital Basel

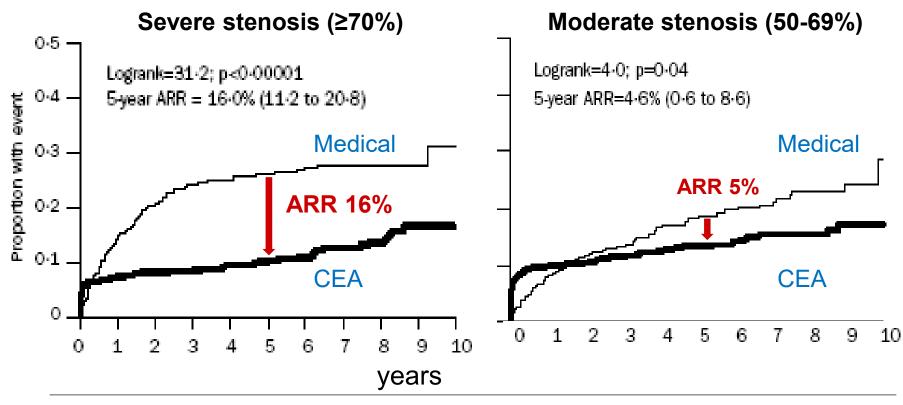
Atherosclerotic disease process

Decrease in stroke risk following TIA due to large artery atherosclerosis



¹Lovett et al., Neurology 2004;62:569–573; ²Purroy et al., Stroke. 2007;38:3225-3229; Amarenco et al., ³TIAregistry, NEJM 374;16

Endarterectomy versus medical therapy


Carotid endarterectomy (CEA)

Symptomatic carotid stenosis: pooled analysis of **NASCET**, **ECST** and **VA** (n=6092)

Perioperative death or stroke, or ipsilateral stroke during follow-up

Endarterectomy versus medical therapy

Long-term ipsilateral stroke or periprocedural stroke or death (PICO 4.1.4) Subgroup: severity of stenosis

	Endartered	,	Medical th			Risk Ratio		Risk Ratio	
Study or Subaroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI	
Near occlusio	n								
NASCET 1991	12	79	12	67	64.2%	0.85 [0.41, 1.76]	1991		
ECST 1998	12	78	5	47	35.8%	1.45 [0.54, 3.85]	1998		
Subtotal (95% CI)		157		114	100.0%	1.03 [0.57, 1.84]		\bullet	Very low 🕀
Total events	24		17						
Heterogeneity: Tau ² =	= 0.00; Chi ² :	= 0.74, 0	df = 1 (P = 1)	0.39); I ²	= 0%				
Test for overall effect	:: Z = 0.09 (P	= 0.93)							
Severe stenos	is (70-99	9%)							
NASCET 1991	29	261	72	264	59.6%	0.41 [0.27, 0.61]	1991		
ECST 1998	21	257	45	172	40.4%	0.31 [0.19, 0.51]			High $\oplus \oplus \oplus \oplus$
Subtotal (95% CI)	21	518	-13		100.0%	0.37 [0.27, 0.50]	1550	—	
Total events	50		117					•	
Heterogeneity: Tau ² =		= 0.70		0 40)· 12	= 0%				
Test for overall effect				0.40), 1	- 070				
rest for overall circer		< 0.000	,01)						
Moderate ste	nosis (50	-69%)						
NASCET 1991	55	428	78	428	58.0%	0.71 [0.51, 0.97]	1991		
ECST 1998	46	380	32	266	42.0%	1.01 [0.66, 1.54]	1998	_ _	Low $\oplus \oplus$
Subtotal (95% CI)		808		694	100.0%	0.82 [0.58, 1.15]			
Total events	101		110						
Heterogeneity: Tau ² =	= 0.03; Chi ² :	= 1.73, 0	df = 1 (P =	0.19); I ²	= 42%				
Test for overall effect	:: Z = 1.14 (P	= 0.25)							
Mild stenosis	(<50%)								
NASCET 1991	87	677	106	690	50.8%	0.84 [0.64, 1.09]	1991		
ECST 1998	125	1085	58	723	49.2%	1.44 [1.07, 1.93]	1998		Very low 🕀
Subtotal (95% CI)		1762		1413	100.0%	1.09 [0.64, 1.85]		-	
Total events	212		164					-	
Heterogeneity: Tau ² = Test for overall effect				0.007); I [;]	² = 86%				
rest for overall effect	2 - 0.32 (F	- 0.73)							
									-++
								0.1 0.2 0.5 1 2	5 10
Test for subgroup dif	ferences: Ch	$i^2 = 21.1$	16. df = 3 (I	o < 0.000	(1), $ ^2 = 8$	35.8%		Endarterectomy Medical the	rapy

Test for subgroup differences: $Chi^2 = 21.16$, df = 3 (P < 0.0001), $I^2 = 85.8\%$

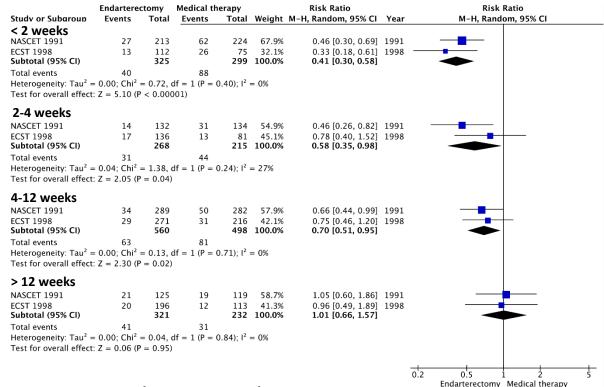
Endarterectomy versus medical therapy

Long-term ipsilateral stroke or peri-procedural stroke or death (PICO 4.1.1) **Subgroup: age**

	Endarterectomy Medical therapy					Risk Ratio		Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl		
< 65 years										
NASCET 1991	46	346	48	276	53.2%	0.76 [0.53, 1.11]	1991			
ECST 1998	40	385	45	274	46.8%	0.63 [0.43, 0.94]	1998	_		
Subtotal (95% CI)		731		550	100.0%	0.70 [0.53, 0.92]				
Total events	86		93							
Heterogeneity: Tau ² =	= 0.00; Chi ²	= 0.47,	df = 1 (P = 0)	0.50); I ²	= 0%					
Test for overall effect	t: Z = 2.58 (P	P = 0.010))	.,						
≥ 65 years										
NASCET 1991	50	413	114	483	63.8%	0.51 [0.38, 0.70]	1991			
ECST 1998	39	330	37	211	36.2%	0.67 [0.44, 1.02]	1998			
Subtotal (95% CI)		743		694	100.0%	0.57 [0.44, 0.73]				
Total events	89		151							
Heterogeneity: Tau ² =	= 0.00; Chi ²	= 1.08,	df = 1 (P = 0)	0.30); I ²	= 7%					
Test for overall effect	,	,		.,						
							-			
								0.5 0.7 İ 1.5 Ż		
Test for subgroup dif	fferences: Ch	$i^2 = 1.2$	3. $df = 1 (P = 1)$	= 0.27).	$l^2 = 18.6$	%		Endarterectomy Medical therapy		

Endarterectomy versus medical therapy

Long-term ipsilateral stroke or peri-procedural stroke or death (PICO 4.1.2) **Subgroup: sex**

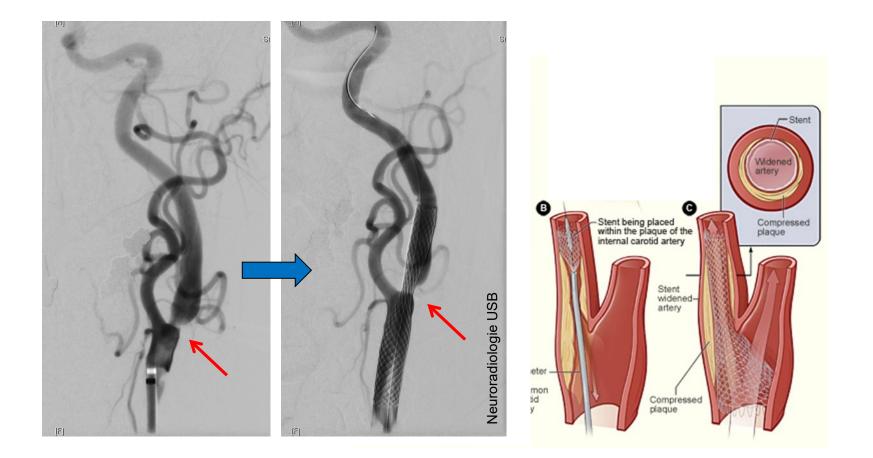

	Endarterectomy		Medical th	erapy		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Men								
NASCET 1991	65	509	124	540	62.7%	0.56 [0.42, 0.73]	1991	
ECST 1998	47	504	60	333	37.3%	0.52 [0.36, 0.74]	1998	_
Subtotal (95% CI)		1013		873	100.0%	0.54 [0.44, 0.67]		
Total events	112		184					
Heterogeneity: Tau ² =	= 0.00; Chi ²	= 0.10,	df = 1 (P = 0)	0.75); I ²	= 0%			
Test for overall effect	t: Z = 5.53 (P	< 0.000	001)					
Women								
NASCET 1991	31	250	38	219	55.3%	0.71 [0.46, 1.11]	1991	
ECST 1998	32	211	22	152	44.7%	1.05 [0.63, 1.73]	1998	_
Subtotal (95% CI)		461		371	100.0%	0.85 [0.58, 1.23]		
Total events	63		60					
Heterogeneity: Tau ² =	= 0.02; Chi ²	= 1.27,	df = 1 (P = 0)	0.26); I ²	= 21%			
Test for overall effect	t: $Z = 0.87$ (P	P = 0.39						
								0.5 0.7 1 1.5 2
								Endarterectomy Medical therapy
Test for subgroup dif	fferences. Ch	$i^2 - 4 1^{1}$	5 df - 1 (P)	-0.04	$1^2 - 75.9$	%		Linual terectority medical therapy

Test for subgroup differences: $Chi^2 = 4.15$, df = 1 (P = 0.04), $I^2 = 75.9\%$

EUROPEAN STROKE ORGANISATION

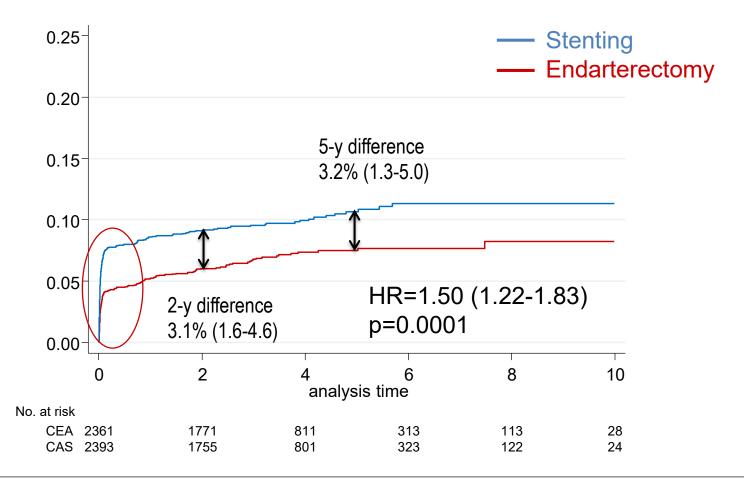
Endarterectomy versus medical therapy

Long-term ipsilateral stroke or periprocedural stroke or death (PICO 4.1.3) **Subgroup: time since most recent event**



Test for subgroup differences: $Chi^2 = 10.96$, df = 3 (P = 0.01), $I^2 = 72.6\%$

Stenting versus endarterectomy

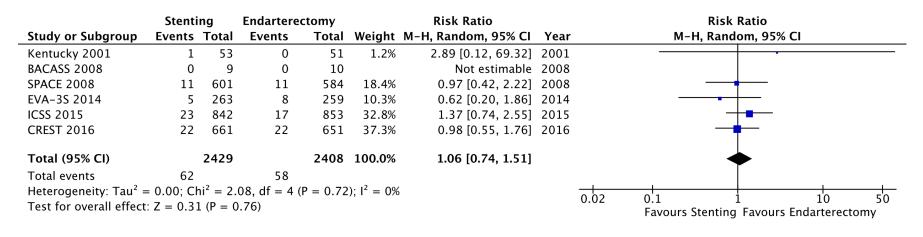

Carotid artery stenting (CAS)

Carotid Stenosis Trialists Collaboration: <u>symptomatic</u> stenosis EVA-3S, SPACE, ICSS and CREST (n=4754)

Procedural stroke or death or ipsilateral stroke during follow-up

Stenting versus endarterectomy

Long-term ipsilateral stroke or peri-procedural stroke or death (PICO 6.1)


	Stenting	9	Endartered	ctomy		Risk Ratio		Risk Ratio
Study or Subgroup	Events T	otal	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% Cl
Kentucky 2001	1	53	1	51	0.5%	0.96 [0.06, 14.98]	2001	
SPACE 2008	56	607	50	589	25.6%	1.09 [0.76, 1.56]	2008	+
BACASS 2008	0	10	1	10	0.4%	0.33 [0.02, 7.32]	2008	
Regensburg 2008	5	43	0	44	0.5%	11.25 [0.64, 197.44]	2008	· · · · · · · · · · · · · · · · · · ·
EVA-3S 2014	32	265	20	262	13.2%	1.58 [0.93, 2.69]	2014	
ICSS 2015	105	853	62	857	35.2%	1.70 [1.26, 2.30]	2015	-
CREST 2016	62	668	43	653	24.5%	1.41 [0.97, 2.05]	2016	
Total (95% CI)	2	499		2466	100.0%	1.43 [1.17, 1.75]		•
Total events	261		177					
Heterogeneity: Tau ² =	= 0.01; Chi ²	= 6.	56, $df = 6$ (P = 0.36	5); $I^2 = 8\%$,)		005 0.1 1 10 200
Test for overall effect	:: Z = 3.50 (P = 0	0.0005)				0.0	05 0.1 1 10 200 Favours Stenting Favours Endarterectomy
							Qu	ality: Moderate $\oplus \oplus \oplus$
							/1	

(Indirectness)

Stenting versus endarterectomy

Post-procedural ipsilateral stroke (PICO 6.2)

Quality: Moderate $\oplus \oplus \oplus$ (Indirectness)

EUROPEAN STROKE ORGANISATION

Stenting versus endarterectomy

Peri-procedural stroke or death (PICO 6.9)

	Favours Ste	enting	Endartere	ctomy		Risk Ratio		Risk Ratio					
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% Cl					
Kentucky 2001	0	53	1	51	1.1%	0.32 [0.01, 7.70]	2001	· · · · · · · · · · · · · · · · · · ·					
EVA-3S 2006	25	265	10	262	15.5%	2.47 [1.21, 5.04]	2006	_					
SPACE 2006	45	607	39	589	29.5%	1.12 [0.74, 1.69]	2006						
BACASS 2008	0	10	1	10	1.1%	0.33 [0.02, 7.32]	2008	· · · · · · · · · · · · · · · · · · ·					
CREST 2010	40	668	21	653	23.4%	1.86 [1.11, 3.12]	2010						
ICSS 2010	61	853	28	857	28.0%	2.19 [1.41, 3.39]	2010						
Ostrava 2014	1	39	1	48	1.4%	1.23 [0.08, 19.05]	2014						
Total (95% CI)		2495		2470	100.0%	1.68 [1.20, 2.34]		•					
Total events	172		101										
Heterogeneity: Tau ² =	= 0.05; Chi ² =	= 8.52, d	f = 6 (P = 0)	.20); I ² =		t	.01 0.1 1 10 100						
Test for overall effect	:: Z = 3.05 (P	= 0.002)	Heterogeneity: $Tau^2 = 0.05$; $Chi^2 = 8.52$, $df = 6$ (P = 0.20); $I^2 = 30\%$ Test for overall effect: Z = 3.05 (P = 0.002)									

Quality: Moderate $\oplus \oplus \oplus$ (Indirectness)

Favours Stenting Favours Endarterectomy

Stenting versus endarterectomy

Peri-procedural stroke or death (PICO 6.9.1)

Subgroup: Age

	Stenti	ng	Endartere	ctomy	Risk Ratio			Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	r M-H, Random, 95% Cl			
<70 years											
EVA-3S 2006	10	127	6	106	14.9%	1.39 [0.52, 3.70]	2006	5			
SPACE 2006	17	347	22	333	37.9%	0.74 [0.40, 1.37]	2006	5			
BACASS 2008	0	4	0	2		Not estimable	2008	3			
ICSS 2010	20	395	14	404	32.0%	1.46 [0.75, 2.85]	2010) +=-			
CREST 2010	9	351	6	327	13.7%	1.40 [0.50, 3.88]	2010)			
Ostrava 2014	0	23	1	34	1.4%	0.49 [0.02, 11.44]	2014	• • • • • • • • • • • • • • • • • • •			
Subtotal (95% CI)		1247		1206	100.0%	1.10 [0.75, 1.60]		•			
Total events	56		49								
Heterogeneity: Tau ² = 0.00; Chi ² = 2.96, df = 4 (P = 0.56); $I^2 = 0\%$											
Test for overall effect:	Z = 0.48	8 (P = 0)).63)								
≥ 70 years											
SPACE 2006	28	260	17	256	27.5%	1.62 [0.91, 2.89]	2006	5 +			
EVA-3S 2006	17	138	5	156	9.7%	3.84 [1.46, 10.14]	2006	5			
BACASS 2008	0	6	1	8	1.0%	0.43 [0.02, 9.00]	2008	3			
CREST 2010	31	317	15	326	25.7%	2.13 [1.17, 3.86]	2010) — — —			
ICSS 2010	45	458	20	453	35.2%	2.23 [1.34, 3.71]	2010) —			
Ostrava 2014	1	16	0	14	0.9%	2.65 [0.12, 60.21]	2014	+ · · · · · · · · · · · · · · · · · · ·			
Subtotal (95% CI)		1195		1213	100.0%	2.10 [1.55, 2.84]		•			
Total events	122		58								
Heterogeneity: Tau ² =	= 0.00; Cł	1i ² = 3.	38, df = 5 ((P = 0.64)); $I^2 = 0\%$						
Test for overall effect:	Z = 4.79	9 (P < C	.00001)								
								0.01 0.1 1 10 100			
								0.01 0.1 1 10 100			

Test for subgroup differences: $Chi^2 = 6.84$, df = 1 (P = 0.009), $I^2 = 85.4\%$

Symptomatic carotid stenosis: impact of age in the peri-procedural and postprocedural period (n=4754)

Peri-procedural stroke or death 6 6 Hazard Ratio (<60 reference) 5 5 4 4 3 3 2 2 0 0 <60 60-64 65-69 70-74 75-79 80+ <60 60-64 65-69 70-74 75-79 80+ Age Group Age Group ••• CEA CAS ••• CEA ••• CAS

Post-procedural ipsilateral stroke

Hazard Ratio (< 60 reference)

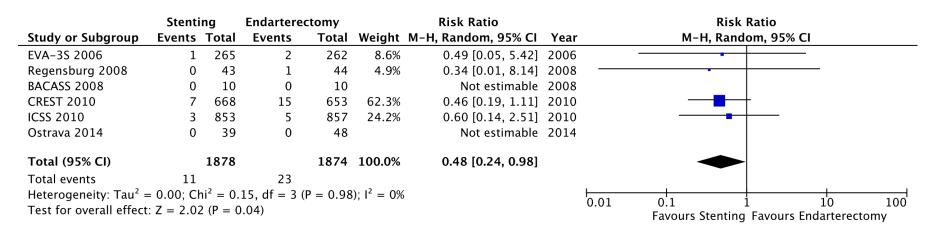
Universitätsspital Basel

Stenting versus endarterectomy

Peri-procedural stroke or death (PICO 6.9.2)

Subgroup: Sex

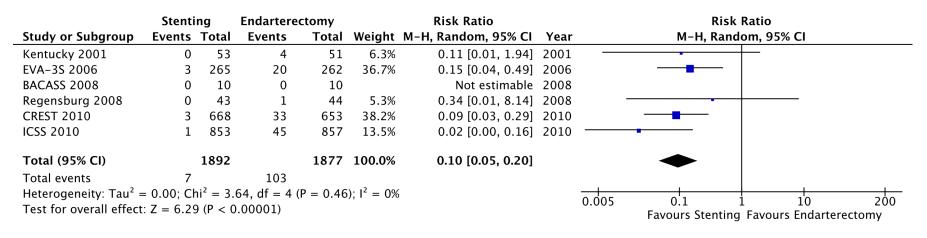
	Stentii	ng	Endartere	ctomy		Risk Ratio		Risk Ratio
Study or Subgroup	Events			,	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Men								
SPACE 2006	31	436	29	422	28.5%	1.03 [0.63, 1.69]	2006	_ _
EVA-3S 2006	21	193	7	204	18.2%	3.17 [1.38, 7.29]	2006	
BACASS 2008	0	8	0	9		Not estimable	2008	
CREST 2010	22	428	15	427	23.4%	1.46 [0.77, 2.78]	2010	+ -
ICSS 2010	46	601	18	606	27.0%	2.58 [1.51, 4.39]	2010	
Ostrava 2014	1	29	1	32	2.9%	1.10 [0.07, 16.85]	2014	
Subtotal (95% CI)		1695		1700	100.0%	1.76 [1.09, 2.85]		◆
Total events	121		70					
Heterogeneity: Tau ² =	= 0.15; Ch	$i^2 = 8.$	80, df = 4 (P = 0.07); $I^2 = 55$	%		
Test for overall effect:	: Z = 2.32	(P = 0).02)					
Women								
SPACE 2006	14	171	10	167	27.2%	1.37 [0.62, 2.99]	2006	
EVA-3S 2006	6	72	4	58	12.0%	1.21 [0.36, 4.08]	2006	
BACASS 2008	0	2	1	1	2.6%	0.22 [0.02, 3.16]	2008	
CREST 2010	18	240	6	226	20.9%	2.83 [1.14, 6.99]	2010	
ICSS 2010	19	252	15	251	37.3%	1.26 [0.66, 2.43]	2010	
Ostrava 2014	0	10	0	16		Not estimable	2014	
Subtotal (95% CI)		747		719	100.0%	1.45 [0.94, 2.23]		◆
Total events	57		36					
Heterogeneity: Tau ² =	= 0.02; Ch	$i^2 = 4.$	30, df = 4 (P = 0.37); $I^2 = 7\%$			
Test for overall effect:	: Z = 1.69	(P = 0).09)					
								0.02 0.1 1 10 5


Favours Stenting Favours Endarterectomy

Test for subgroup differences: $Chi^2 = 0.35$, df = 1 (P = 0.55), $I^2 = 0\%$

Stenting versus endarterectomy

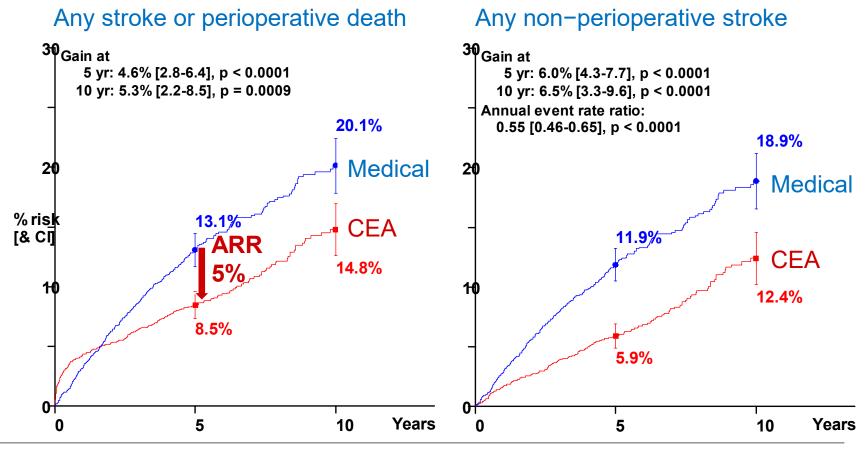
Peri-procedural myocardial infarction (PICO 6.11)



Quality: Moderate $\oplus \oplus \oplus$ (Indirectness, imprecision)

Stenting versus endarterectomy

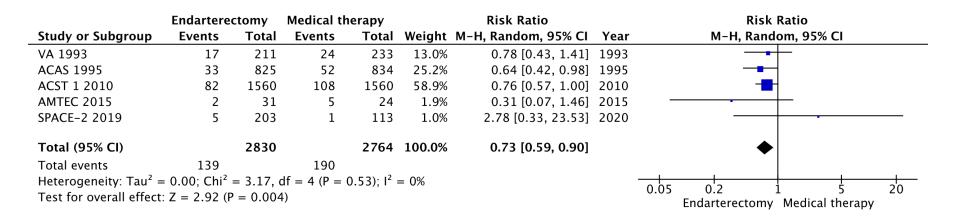
Peri-procedural cranial nerve injury (PICO 6.12)


Quality: High $\oplus \oplus \oplus \oplus$

Endarterectomy versus medical therapy

<u>Asymptomatic</u> carotid stenosis: pooled analysis of VA, ACAS and ACST (n=5226)

>60% stenosis


A Halliday et al. Submitted.

Universitätsspital Basel

Endarterectomy versus medical therapy

Long-term ipsilateral stroke or peri-procedural stroke or death (PCIO 1.1)

Quality: Moderate $\oplus \oplus \oplus$ (Indirectness)

EUROPEAN STROKE ORGANISATION

Endarterectomy versus medical therapy

Long-term stroke in <u>any</u> territory or peri-procedural death (PICO 1.2.1) **Subgroup: Sex**

	Endartere	ctomy	Medical th	erapy		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight M	1-H, Random, 95% Cl	M-H, Random, 95% Cl
Men ACST 1 2010 Subtotal (95% Cl)	89	1021 1021	134	1023 1023	100.0% 100.0%	0.67 [0.52, 0.86] 0.67 [0.52, 0.86]	+
Total events Heterogeneity: Not ap	89 oplicable		134				
Test for overall effect	Z = 3.15 (F	P = 0.002	2)				
Women ACST 1 2010 Subtotal (95% CI)	40	539 539	65	537 537	100.0% 100.0%	0.61 [0.42, 0.89] 0.61 [0.42, 0.89]	
Total events Heterogeneity: Not a Test for overall effect	•	P = 0.01	65				
Test for subgroup dif	foroncoc: Ch	$x^2 = 0.1^2$	2 df _ 1 (D	- 0 72)	l ² - 0%	_	0.5 0.7 1 1.5 2 Endarterectomy Medical therapy

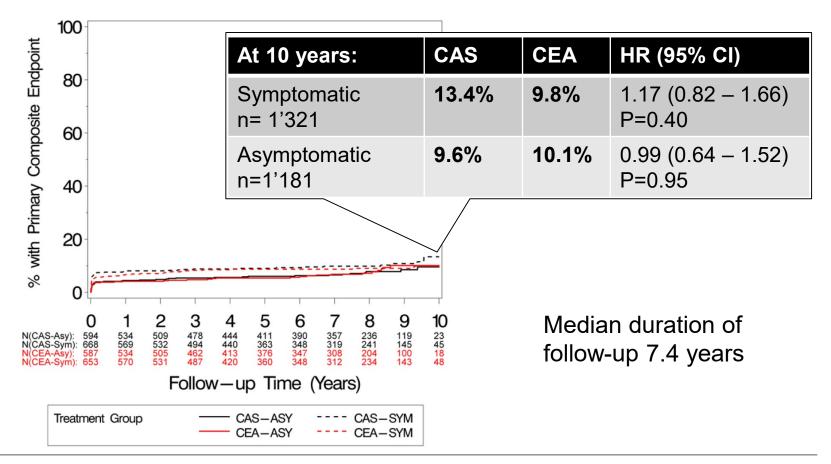
Test for subgroup differences: $Chi^2 = 0.13$, df = 1 (P = 0.72), $I^2 = 0\%$

EUROPEAN STROKE ORGANISATION

Endarterectomy versus medical therapy

Long-term stroke in <u>any</u> territory or peri-procedural death (PICO 1.2.2) **Subgroup: Age**

	Endartere	ctomy	Medical th	erapy		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight M	I-H, Random, 95% CI	M-H, Random, 95% Cl
< 75 years ACST 1 2010 Subtotal (95% Cl)	98	1231 1231	160	1239 1239	100.0% 100.0%	0.62 [0.49, 0.78] 0.62 [0.49, 0.78]	*
Total events Heterogeneity: Not ag	98 oplicable		160				
Test for overall effect	•	<i>c</i> < 0.000	01)				
≥ 75 years ACST 1 2010 Subtotal (95% CI)	41	329 329	39	321 321	100.0% 100.0%	1.03 [0.68, 1.55] 1.03 [0.68, 1.55]	
Total events Heterogeneity: Not ar Test for overall effect	•	P = 0.90	39				
Test for subgroup dif		•2	1 16 1 6	0.04	12 77 70/		0.2 0.5 1 2 5 Endarterectomy Medical therapy


Test for subgroup differences: $Chi^2 = 4.41$, df = 1 (P = 0.04), $I^2 = 77.3\%$

Stenting versus endarterectomy

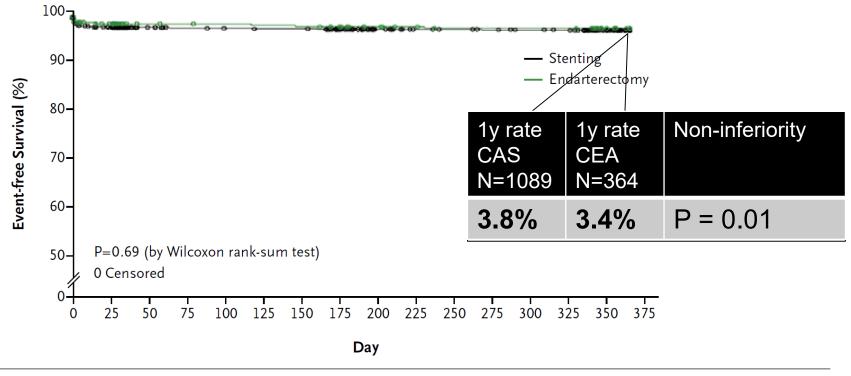
CREST: stenting versus endarterectomy in patients with <u>symptomatic</u> or <u>asymptomatic</u> carotid stenosis

Any stroke, death or myocardial infarction up to 30 days after treatment or ipsilateral stroke during follow-up

CREST: short-term results according to symptom status

Events within 30 days of treament

	CAS	CEA	Overall HR (95% CI)
Symptomatic			
Stroke or death	6.0%	3.2%	1.89 (1.11 - 3.21) P=0.02
Myocardial infarction	1.0%	2.3%	0.45 (0.18 - 1.11) P=0.08
Asymptomatic			
Stroke or death	2.5%	1.4%	1.88 (0.79 - 4.42) P=0.15
Myocardial infarction	1.2%	2.2%	0.55 (0.22 - 1.38) P=0.20

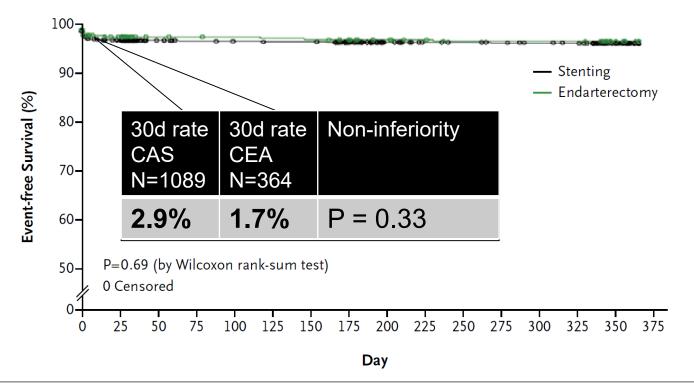


ACT-1: stenting versus endarterectomy in patients with <u>asymptomatic</u> carotid stenosis

3:1 randomisation CAS:CEA

Trial stopped after 1453 patients due to slow enrolment

Any stroke, death or myocardial infarction up to 30 days after treatment or ipsilateral stroke during follow-up



Universitätsspital

Rosenfield et al., N Engl J Med 2016;374:1011-20

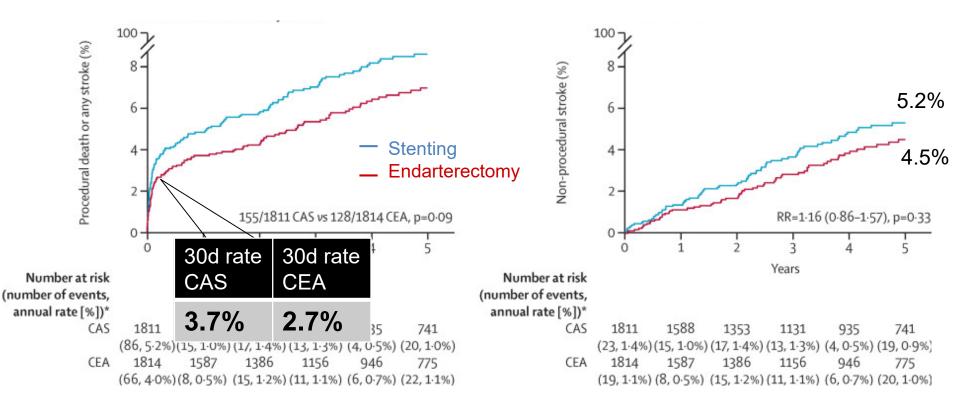
ACT-1: stenting versus endarterectomy in patients with <u>asymptomatic</u> carotid stenosis

Any stroke or death within 30 days after treatment

Rosenfield et al., N Engl J Med 2016;374:1011-20

Stenting versus endarterectomy

Long-term ipsilateral stroke or peri-procedural stroke or death (PICO 3.1)


	Stenti	ing	Endartere	ctomy		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Kentucky 2004	0	43	0	42		Not estimable	2004	
Houston 2014	1	27	0	28	1.3%	3.11 [0.13, 73.11]	2014	
ACT-1 2016	41	1089	12	364	31.9%	1.14 [0.61, 2.15]	2016	-
CREST 2016	36	594	28	587	55.2%	1.27 [0.79, 2.05]	2016	
Carmel Medical Center 2017	2	68	1	68	2.3%	2.00 [0.19, 21.54]	2017	
SPACE-2 2019	6	197	5	203	9.3%	1.24 [0.38, 3.99]	2020	
Total (95% CI)		2018		1292	100.0%	1.25 [0.88, 1.79]		•
Total events	86		46					
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 0.55$, $df = 4$ (P = 0.97); $I^2 = 0\%$								0.02 0.1 1 10 50
Test for overall effect: $Z = 1.23$ (P = 0.22)								Favours Stenting Favours Endarterectomy

Quality: Moderate $\oplus \oplus \oplus$ (Imprecision)

ACST-2: stenting versus endarterectomy for <u>asymptomatic</u> carotid stenosis (n=3625)

Any stroke or procedural death

Non-procedural stroke

ACST-2: Severity of worst procedural event & worst non-procedural stroke

		l (<30 days) or death	Non-procedural stroke (with mean 5-year FU)		
	Allocated CAS n=1811	Allocated CEA n=1814	Allocated CAS n=1748*	Allocated CEA n=1767*	
Disabling or fatal	15 (0.9%) ⁺	18 (1.0%)†	44 (2.5%)	45 (2.5%)	
<u>Non</u> -disabling	48 (2.7%)	29 (1.6%)	47 (2.7%)	34 (1.9%)	

* Excludes the 63 CAS vs 47 CEA patients who had a procedural stroke or death

+ Includes the 2 CAS vs 6 CEA procedural deaths not involving a stroke

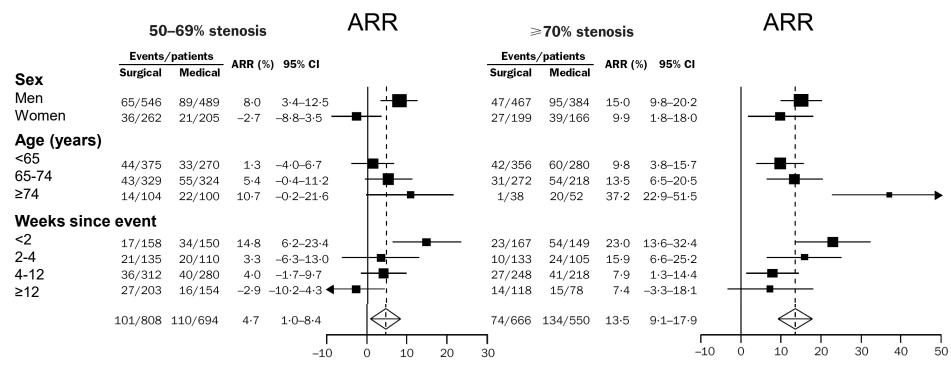
A. Halliday et al., Lancet. 2021 Sep 18;398(10305):1065-1073

Stenting versus endarterectomy

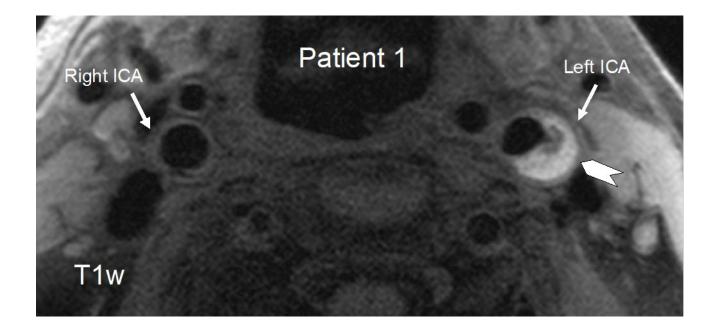

Long-term ipsilateral stroke or peri-procedural stroke or death (PICO 3.1) Updated with ACST-2

	Stenti	ng	Endarterectomy		Risk Ratio			Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Kentucky 2004	0	43	0	42		Not estimable	2004	
Houston 2014	1	27	0	28	0.5%	3.11 [0.13, 73.11]	2014	
ACT-1 2016	41	1089	12	364	13.0%	1.14 [0.61, 2.15]	2016	
CREST 2016	36	594	28	587	22.4%	1.27 [0.79, 2.05]	2016	
Carmel Medical Center 2017	2	68	1	68	0.9%	2.00 [0.19, 21.54]	2017	
SPACE-2 2019	6	197	5	203	3.8%	1.24 [0.38, 3.99]	2020	
ACST-2 2021	99	1811	73	1814	59.4%	1.36 [1.01, 1.83]	2021	⊢
Total (95% CI)	3829		3106		100.0%	1.31 [1.05, 1.65]		
Total events	185		119					
Heterogeneity: Tau ² = 0.00; Chi ² = 0.67, df = 5 (P = 0.98); I ² = 0%								1.02 0.1 1 10 50
Test for overall effect: $Z = 2.35$ (P = 0.02)								0.02 0.1 1 10 50 Favours Stenting Favours Endarterectomy

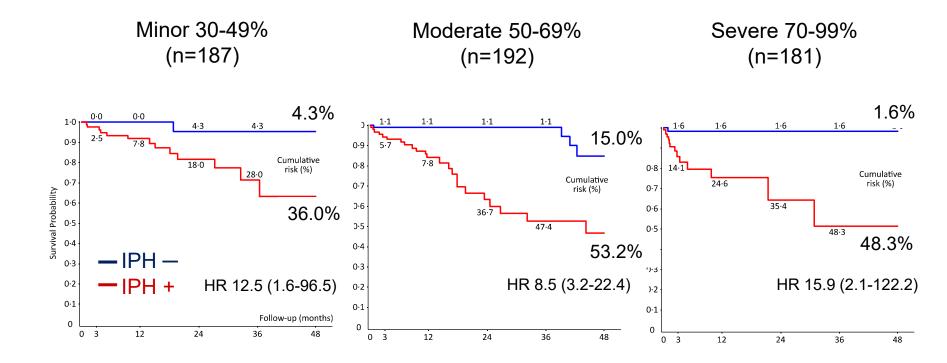
Quality: High $\oplus \oplus \oplus \oplus$


Selection of patients for treatment

Strokes prevented by CEA in patients with symptomatic 50-99% stenosis after 5 years


Do all patients with <u>symptomatic</u> carotid stenosis benefit equally from surgery?

 \rightarrow Benefit is highest in men, elderly patients, and if treated within 2 weeks of symptoms


Intra-plaque haemorrhage (IPH) on magnetic resonance imaging

Hyperintense on T1-weighted fat-suppressed sequences

IPH increases stroke risk independent of degree of symptomatic carotid stenosis

Management recommendations

Recommendations: Medical therapy and risk factor management

- Recently symptomatic carotid stenosis:
 - Early limited-duration dual antiplatelet therapy (aspirin plus clopidogrel or ticagrelor) in patients with recent minor stroke or TIA
- Stable carotid disease (asymptomatic or >1 month after syx):
 - Antiplatelet monotherapy
 - Rivaroxaban 2*2.5 mg + aspirin 100 mg
- High (moderate) intensity statin
 - ideally <1.4 mMol/L LDL-C for symptomatic and asymptomatic patients
 - Add ezetimibe and consider PSCK-9 inhibitors to reach target
- Blood pressure lowering to ≤140/90 mmHg
- Glycaemic control to HbA1c $\leq 6.5\%$
- Smoking cessation, diet, excercise

ESO Guideline on Endarterectomy and Stenting for Carotid Artery Stenosis

Leo H Bonati, Stavros Kakkos, Joachim Berkefeld, Gert J. de Borst, Richard Bulbulia, Alison Halliday, Isabelle van Herzeele, Igor Koncar, Dominick J H McCabe, Avtar Lal, Jean-Baptiste Ricco, Peter Ringleb, Martin Taylor-Rowan, Hans-Henning Eckstein

Eur Stroke J. 2021 Jun;6(2):1

Endarterectomy versus medical therapy

Evidence-based recommendation

In patients with ≥60% asymptomatic carotid artery stenosis **considered to be at increased risk of stroke** on best medical therapy alone, **we recommend carotid endarterectomy**.

Quality of evidence: Moderate $\bigoplus \bigoplus \bigoplus$

Strength of recommendation: Strong for carotid endarterectomy ↑↑

This recommendation is independent of sex and stenosis severity.

Expert consensus statement

In selected patients 75 years of age or older with ≥60% asymptomatic carotid artery stenosis and an **expected survival of at least five years**, who are considered to be at an increased risk of stroke on best medical therapy alone, **carotid endarterectomy is suggested** after careful consideration of the risks and benefits at a multi-disciplinary team meeting.

Supporting information

Characteristics associated with increased stroke risk:

- Silent infarction on neuroimaging
- High degree or progression of stenosis
- Echolucent plaque on ultrasound
- Intra-plaque haemorrhage on MRI
- Micro-emboli or reduced cerebrovascular reserve on trans-cranial Doppler

Stenting versus medical therapy

Evidence-based Recommendation

In patients with asymptomatic carotid stenosis, **we recommend against carotid artery stenting** as a routine alternative to best medical therapy alone.

Quality of evidence: Very low

Strength of recommendation: Weak against carotid stenting ↓

Supporting information

Carotid artery stenting versus best medical therapy alone are being compared in one of the two parallel study arms in the ongoing *Carotid Revascularization and Medical Management for Asymptomatic Carotid Stenosis Trial (CREST-2)*

Stenting versus endarterectomy (before publication of ACST-2)

Evidence-based Recommendation

In patients with asymptomatic carotid stenosis in whom revascularisation is considered to be appropriate, we suggest endarterectomy as the current treatment of choice. Quality of evidence: Moderate $\bigoplus \bigoplus \bigoplus$

Strength of recommendation: Weak for carotid endarterectomy ↑

Expert consensus statements

In patients with asymptomatic carotid stenosis in whom revascularisation is considered to be appropriate and **who are less suitable for surgery, stenting may be suggested**. We recommend careful consideration of the risks and benefits at a multi-disciplinary team meeting.

The independently assessed **risk of in-hospital stroke or death** following endarterectomy or stenting for asymptomatic carotid stenosis should be as low as possible, **ideally below 2%**.

Endarterectomy versus medical therapy

Evidence-based Recommendations

In patients with severe (70-99%) symptomatic carotid artery stenosis, we recommend carotid endarterectomy.

Quality of evidence: High $\oplus \oplus \oplus \oplus$

Strength of recommendation: Strong for carotid endarterectomy $\uparrow\uparrow$

In patients with moderate (50-69%) symptomatic carotid artery stenosis, we suggest carotid endarterectomy.

Quality of evidence: Low $\oplus \oplus$

Strength of recommendation: Weak for carotid endarterectomy ↑

In patients with **mild (<50%) symptomatic carotid artery stenosis, we recommend against carotid endarterectomy**.

Quality of evidence: Very low \oplus

Strength of recommendation: Strong against carotid endarterectomy $\downarrow\downarrow$

In patients with 50-99% symptomatic carotid stenosis in whom surgery is considered appropriate, **we recommend early endarterectomy, ideally within two weeks** of the first neurological event.

Quality of evidence: High $\oplus \oplus \oplus \oplus$

Strength of recommendation: Strong for carotid endarterectomy ^↑

These recommendations are independent of sex and age.

Stenting versus endarterectomy

Evidence-based Recommendation

In patients with symptomatic carotid artery stenosis requiring revascularisation, we recommend endarterectomy as the treatment of choice.

Quality of evidence: Moderate $\oplus \oplus \oplus$

Strength of recommendation: Strong for carotid endarterectomy

In patients with symptomatic carotid stenosis <70 years old requiring revascularisation, we suggest that stenting may be considered as an alternative to endarterectomy.

Quality of evidence: Low $\oplus \oplus$

Strength of recommendation: Weak for carotid stenting ↑

Expert consensus statements

The suitability of a patient with symptomatic carotid stenosis for carotid endarterectomy versus stenting should also take into account the **interval** since their last ischaemic cerebrovascular event, as well as **anatomical and morphological features**, including the atherosclerotic burden of the aortic arch.

The independently assessed **risk of in-hospital stroke or death** following endarterectomy or stenting for symptomatic carotid stenosis **should not exceed 4%**.

Thank you for your attention

City of Basel

