Imitateurs et caméléons de l’AVC chez les jeunes et les très âgés

30 Septembre 2021

Dr. Davide Strambo

Médecin hospitalier, Centre Cérébrovasculaire
Service de Neurologie,
Département des Neurosciences Cliniques

Centre Hospitalier Universitaire Vaudois
Centre cérébrovasculaire
Outline

• Stroke mimics and chameleons
• Two exemplary cases
• General rules to differentiate them
• Mimics and chameleons in old and young patients
Stroke mimics and chameleons

A. Stroke mimic: symptoms ...
 – That look like stroke
 – But are caused by another disease

B. Chameleon stroke: symptoms ...
 – That look like some other disease
 – But are caused by stroke

C. Simultaneous presence...
 – of acute stroke and of
 – another acute neurological condition

Over-diagnosis of stroke (« imitator »)

Under-diagnosis of stroke (missing strokes)

« Stroke plus syndrome »
Incidence of stroke mimics and chameleons

A. Stroke mimic:
- Prehospital / ambulance personnel: 20-50%
- Emergency room physician: 10-20%
- Neurologist: 2-5%

B. Chameleon stroke:
- Emergency room physician: 2-5%?
- Neurologist: 1-3%?

C. Simultaneous presence...

Mimics: Mazighi Curr Opin Neurol 2012; Oostema Stroke 2015; Chameleons: Richoz Neurology 2015
Example case 1- 34 year old woman

• Good health, no comorbidities
• While doing fitness acute onset of thunderclap headache and loss of consciousness
• GCS 6 according to paramedics, GCS 4 in peripheral stroke unit
• CT → CHUV
Brain CT

Case 1
Transfert to CHUV

• Top of the basilar syndrome

• \(\rightarrow\) IV thrombolysis at +2h from symptoms onset

• Admitted to ICU
Follow-up

Case 1

CTA baseline

MRI-TOF follow-up

BA

R SCA

L SCA

L PCA

R PCA(f)

R SCA

BA
And the headache?
Example case 2 - 87 years old man

- Living alone, independent for daily activities, CMS help (to wear compression stokings in the morning)

- Known for:
 - arterial hypertension
 - atrial fibrillation anticoagulated by apixaban
 - smoking stopped (40 UPA)
Example case 2 - 87 year old man

• Found at 8h by CMS person with left hemiparesis and dysarthria (last seen well the morning before, but onset likely shortly before he was found)

• In the ER:
 – awake, oriented, no other speech deficit except dysarthria, left multimodal neglect
 – no visual field deficit
 – right-sided eyes deviation
 – left central facial palsy, left-sided severe hemiparesis
Acute MRI

DWI

ADC
Epilepsy: also a radiological mimic

DWI ADC PWI

Tmax
HOW TO IDENTIFY MIMICS AND CHAMELEONS
« Classical » stroke presentation

• Exact onset can be determined

• Definite history of focal neurological symptoms
 – Deficit attributable to right or left brain
 – Stroke localisation possible (anterior/posterior/lacunar)

• No previous cognitive impairment

• No abnormal findings in other systems

Hand et al. Stroke 2006
How to detect acute ischaemia?

Sensitivity for acute ischemic stroke on **CT** and **MRI**

- **CT** in lacunar strokes
- **DWI** in lacunar strokes
- **CT** in territorial strokes
- **DWI** in territorial strokes
- **CT-Perfusion** in any stroke

How to detect acute ischaemia?

Sensitivity for acute ischemic stroke on CT and MRI

- DWI in territorial strokes
- DWI in lacunar strokes
- CT in territorial strokes
- CT-Perfusion in any stroke

→ MRI globally better to diagnose stroke (and imitators)
→ If CT-based imaging: do CTP whenever possible

Stroke mimics and chameleons
= The differential diagnosis of stroke & TIA

- Seizure (focal, or Todd’s phenomenon)
- Migraine with aura
- Acute vertigo of peripheral or other origin
- Transient global amnesia
- (Pre-) Syncope / systemic hypotension, orthostatisme
- Psychiatric / conversion syndrome
- Other focal brain lesion (MS plaque, subdural, tumor...)
- Hypertensive encephalopathy / Posterior reversible leukoencephalopathy
- Meningitis / encephalitis
- Systemic metabolic and infectious causes, intoxications
 - Decomposition of old lesions
 - Confusional state
 - Stupor / coma
Caractéristiques cliniques des atteintes neurologiques aiguës / transitoires du CNS

AVC
- Début variable
- Absence de signes objectifs
- Non-concernement
- Démonstrativité à l'examen
- Antécédents psychiatriques et psycho-sociaux

Epilepsie partielle
- Progression sur sec. - 1min
- Phénomènes positifs (clonies, paresthésies)
- Parfois perte de connaissance / amnésie
- Antécédents épilepsie, OH

Migraine + aura
- Progression sur 3-15 min
- Phénomènes pos. ou négatifs
- Apparition 2° de céphalées
- Pas de baisse de vigilance
- Antécédents de migraines

Lipothymie / Syncope
- Progression sur sec. - 1min
- Symptômes lipothymiques généralisés
- Baisse vigilance rare
- Ev. orthostatisme

Amnésie globale transit.
- Début rapide
- Amnésie profondes pour des données récentes
- Mémoire autobiogr. OK
- Pas de signes focaux
- 50% episode stressant avant

Malaise psychogène
- Début variable
- Absence de signes objectifs
- Non-concernement
- Démonstrativité à l'examen
- Antécédents psychiatriques et psycho-sociaux

Autres : hypoglycémie, poussée SEP, état confusionnel.
Stroke mimics: *really a major issue in practice?*

Patients with stroke mimics:

- Will be assessed in emergency, which will often be useful, because mimics are usually other neurological disorders *needing an urgent management*.
- Are not likely to undergo *mechanical thrombectomy* because they have no large-vessel occlusion.
- May receive an inappropriate treatment with rt-PA, but in this case, they have a very *small risk of thrombolysis complication*.
- Some risk of inappropriate use of available facilities.

D Leys et al. Arq Neuropsiquiatr 2020
Patients with stroke chameleons:

- May present as acute peripheral vertigo, peripheral nerve palsy, seizure, movement disorders, acute behaviour disturbances
- But have undiagnosed strokes that may be disabling
- Risk of under-treatment:
 - identified with delay and may not receive necessary reperfusion therapies
 - not identified at all and do not benefit from secondary prevention measures
Stroke chameleons: stroke presentations frequently misinterpreted

<table>
<thead>
<tr>
<th>Clinical presentation</th>
<th>Wrong diagnosis</th>
<th>Localisation of stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertigo and ataxia, with/without nystagmus</td>
<td>Peripheral vertigo</td>
<td>Cerebellar or lower brainstem stroke</td>
</tr>
<tr>
<td></td>
<td>BPPV</td>
<td>(Wallenberg)</td>
</tr>
<tr>
<td></td>
<td>Gastroenteritis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>«Spell/malaise»</td>
<td></td>
</tr>
<tr>
<td>Decreased level of consciousness</td>
<td>Metabolic coma</td>
<td>Bi-thalamic, midbrain</td>
</tr>
<tr>
<td></td>
<td>Intoxication</td>
<td>(“top of the basilar syndrome”)</td>
</tr>
<tr>
<td></td>
<td>Epileptic seizure</td>
<td></td>
</tr>
<tr>
<td>Single extremity paresis (face, arm, leg)</td>
<td>Radial palsy</td>
<td>Frontal juxta-</td>
</tr>
<tr>
<td></td>
<td>Plexopathy</td>
<td>(cortical)</td>
</tr>
</tbody>
</table>
Stroke chameleons: stroke presentations frequently misinterpreted - 2

<table>
<thead>
<tr>
<th>Clinical presentation</th>
<th>Wrong diagnosis</th>
<th>Localisation of stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphasia, apraxia</td>
<td>Confusional state</td>
<td>Left MCA</td>
</tr>
<tr>
<td></td>
<td>Psychogenic</td>
<td></td>
</tr>
<tr>
<td>Amnesia</td>
<td>Transient global aphasia.</td>
<td>Anterior thalamus, anterior ACA, other</td>
</tr>
<tr>
<td></td>
<td>Psychogenic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Confusional state</td>
<td></td>
</tr>
<tr>
<td>Confusional state</td>
<td>Metabolic confusional state</td>
<td>Thalamus, right MCA/PCA</td>
</tr>
<tr>
<td>Behavioral change, abulia</td>
<td>Depression</td>
<td>ACA, head of caudate, thalamus</td>
</tr>
<tr>
<td></td>
<td>Psychogenic</td>
<td></td>
</tr>
</tbody>
</table>
Multivariate analysis comparing stroke-chameleons vs. strokes

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>OR (95% CI)</th>
<th>p Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (for 1-y increase above 18 y)</td>
<td>0.98 (0.96-0.99)</td>
<td><0.01</td>
<td>Younger</td>
</tr>
<tr>
<td>Pretreatment with hypolipidemic drugs</td>
<td>0.29 (0.09-0.97)</td>
<td>0.04</td>
<td>Less statins</td>
</tr>
<tr>
<td>NIHSS score on admission (for 1-point increase)</td>
<td>0.99 (0.96-1.04)</td>
<td>0.99</td>
<td>Lower NIHSS</td>
</tr>
<tr>
<td>Eye deviation</td>
<td>0.21 (0.05-0.94)</td>
<td>0.04</td>
<td>Less eye deviation</td>
</tr>
<tr>
<td>Diastolic blood pressure</td>
<td>0.98 (0.96-0.99)</td>
<td>0.04</td>
<td>Lower BP</td>
</tr>
<tr>
<td>Cerebellar stroke</td>
<td>3.78 (1.87-7.63)</td>
<td><0.01</td>
<td>More cerebellar strokes</td>
</tr>
</tbody>
</table>

Richoz et al. Neurology 2015
Patterns in the diagnostic process leading to missing acute ischemic strokes

<table>
<thead>
<tr>
<th>Pattern</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke symptoms attributed to another disease<sup>a</sup></td>
<td>38 (80.8)</td>
</tr>
<tr>
<td>Attributed to another neurologic disease<sup>a</sup></td>
<td>20 (42.6)</td>
</tr>
<tr>
<td>Attributed to nonneurologic disease<sup>a</sup></td>
<td>8 (17.0)</td>
</tr>
<tr>
<td>Unexplained decreased level of consciousness</td>
<td>10 (21.3)</td>
</tr>
<tr>
<td>Stroke symptoms attributed to a concomitantly present condition<sup>b</sup></td>
<td>9 (19.1)</td>
</tr>
<tr>
<td>Attributed to concomitant neurologic condition<sup>b</sup></td>
<td>5 (10.6)</td>
</tr>
<tr>
<td>Attributed to concomitant psychiatric condition<sup>b</sup></td>
<td>4 (8.5)</td>
</tr>
</tbody>
</table>
Stroke chameleons: risk factors, circumstances, and outcomes

<table>
<thead>
<tr>
<th></th>
<th>AIS-C</th>
<th>AIS</th>
<th>Unadjusted OR (95% CI)</th>
<th>Adjusted OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients</td>
<td>47</td>
<td>2,153</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Favorable outcome</td>
<td>23 (50.0)</td>
<td>1,273 (61.6)</td>
<td>0.62 (0.35-1.12)</td>
<td>0.21 (0.09-0.46)</td>
</tr>
<tr>
<td>Mortality</td>
<td>14 (30.4)</td>
<td>402 (19.4)</td>
<td>1.81 (0.95-3.43)</td>
<td>4.37 (1.81-10.54)</td>
</tr>
<tr>
<td>Recurrent ischemic cerebrovascular event</td>
<td>6 (13.3)</td>
<td>195 (9.9)</td>
<td>1.40 (0.59-3.35)</td>
<td>1.68 (0.68-4.12)</td>
</tr>
</tbody>
</table>

Richoz et al. Neurology 2015
Avoid stroke chameleons
Think « stroke » if acute appearance of ...

Isolated vertigo

Coma / decreased level of consciousness

Monoparesis

Confusion / amnesia/ behavioural problem
MIMICS AND CHAMELEONS IN OLD AND YOUNG PATIENTS
Age distribution in stroke, mimics and chameleons

«Regular» strokes

Chameleons

Mimics
Mimics by age: the numbers

<table>
<thead>
<tr>
<th>Age</th>
<th>All standard TIV</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mimics</td>
<td>Strokes</td>
</tr>
<tr>
<td><50</td>
<td>22</td>
<td>122</td>
</tr>
<tr>
<td>50-80</td>
<td>34</td>
<td>1005</td>
</tr>
<tr>
<td>>80</td>
<td>28</td>
<td>539</td>
</tr>
</tbody>
</table>

- **Missed IVT**
 - <50: 100%
 - 50-80: 10%
 - >80: 0%

- **Pie chart**
 - >80
 - 50-80
 - <50
Chameleons by age: the numbers

<table>
<thead>
<tr>
<th>Age</th>
<th>Chameleons</th>
<th>Strokes</th>
</tr>
</thead>
<tbody>
<tr>
<td><50</td>
<td>37</td>
<td>539</td>
</tr>
<tr>
<td>50-80</td>
<td>97</td>
<td>3286</td>
</tr>
<tr>
<td>>80</td>
<td>48</td>
<td>1883</td>
</tr>
</tbody>
</table>

All ischemic stroke

![Pie chart showing percentage distribution of ischemic stroke cases by age group]
Lysed mimics over the years

- 2009-10: 2%
- 2011-12: 3%
- 2013-14: 8%
- 2015-16: 6%
- 2017-18: 7%
- 2019-20: 4%
Lysed mimics over the years by age groups

- < 50:
 - 2009-10: 0%
 - 2011-12: 1%
 - 2013-14: 5%
 - 2015-16: 4%
 - 2017-18: 6%
 - 2019-20: 3%

- 50-80:
 - 2009-10: 17%
 - 2011-12: 10%
 - 2013-14: 25%
 - 2015-16: 14%
 - 2017-18: 28%
 - 2019-20: 6%

- > 80:
 - 2009-10: 0%
 - 2011-12: 1%
 - 2013-14: 5%
 - 2015-16: 4%
 - 2017-18: 6%
 - 2019-20: 3%

- Overall:
 - 2009-10: 0%
 - 2011-12: 1%
 - 2013-14: 5%
 - 2015-16: 4%
 - 2017-18: 6%
 - 2019-20: 3%
Mimics diagnosis according to age

- Encephalopathy
- Inflammatory/infectious disease
- Migraine
- Neurovascular not ischemic
- Peripheral deficit
- Psychogenic
Lysed mimics by age groups: MRI effect?
Chameleons over the years

Overall

- 4% in 2009-10
- 3% in 2011-12
- 5% in 2013-14
- 4% in 2015-16
- 3% in 2017-18
- 3% in 2019-20
Chameleons over the years by age groups
Symptoms of stroke chameleons according to age

- No paresis
- Vigilance alteration
- Cognitive deficit
- Isolated aphasia
- Isolated cerebellar syndrome

Age categories:
- <50
- 50-80
- >80
Stroke mimics and chameleons: conclusion

• Suspicion of stroke/TIA: make a differential diagnosis (= keep an open mind)

• Avoid mimics over-treatment
 – Know clinical presentation of mimics (migraine, seizure ...)
 – Careful history, witnesses

• Avoid chameleon strokes and under-treatment
 – Know usual and unusual stroke presentations
 – Think of stroke if vertigo with red flags, sudden unexplained coma, sudden cognitive changes, even in young patient

• Select appropriate imaging, and look at it carefully
Mimics and chameleons in young and old patients

• Stroke mimics: be attentive to →
 – In young: migraine and psychogenic
 – In old: seizures encephalopathies

• Stroke chameleons: be attentive to →
 – In young: absence of paresis, vigilance alterations
 – In old: isolated aphasia, new cognitive deficits
 – In everybody: cerebellar symptoms
MERCI POUR L’ATTENTION!