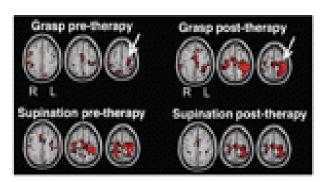

Stimulation (neuromodulation) for post stroke recovery – ready?

Jesse Dawson

Mechanisms of upper limb impairment / recovery

Neurogenesis?

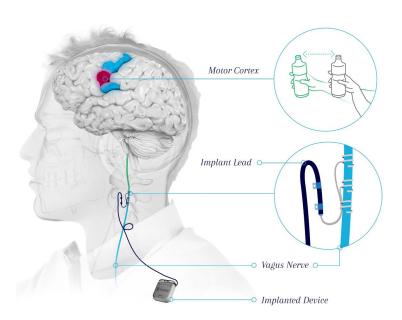


Inflammation / neuroinhibitory factors?

How does recovery occur?? PLASTICITY

- Plasticity intrinsic ability of the brain to reorganize its function and structure in response to stimuli and injuries
- Changed neural activity and connectivity in perilesional, remote and contralateral legions after stroke
 - Increased ipsilesional activity
 - Inhibitory contralateral effects

Brain, Volume 134, Issue 6, June 2011, Pages 1591–1609, https://doi.org/10.1093/brain/awr039


The content of this slide may be subject to copyright: please see the slide notes for details.

What do we mean by neuromodulation?

 The alteration of nerve activity through targeted delivery of a stimulus, such as electrical stimulation or chemical agents, to specific neurological sites in the body

https://www.neuromodulation.com/

(dis) Advantages of neuromodulation vs. drugs

Neuromodulation

Expensive / up front capital cost

Highly targeted

Highly reversible

Continuous / specifically timed

Ease of dose optimization

Potential for closed loop systems

Invasive

More effective in some cases

Drugs

Cheap

Off target effects

Longer action

Fixed regimens

Non-invasive

Risk of tolerance

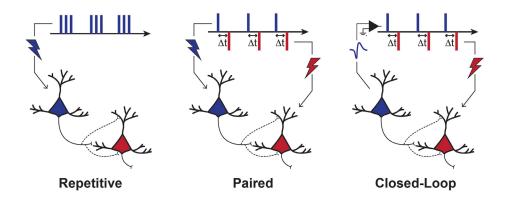
Methods of stimulation

Repetitive

TMS

tDCS

Invasive electrical stimulation


Paired stimulation

TMS + peripheral stimulation

Closed loop stimulation

Behaviour controlled

EEG controlled

Improvement of motor impairment

VNS

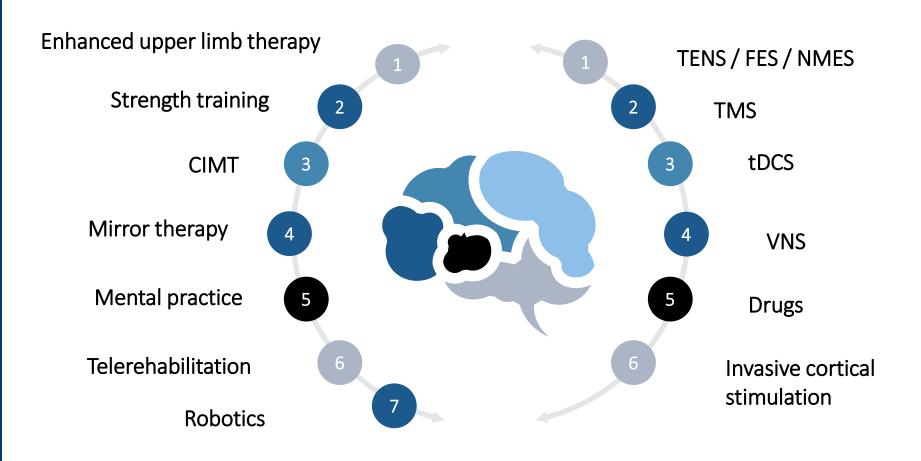
TMS

tDCS

Direct epidural stimulation

Treatment of spasticity

NMES


Treatment of dysphagia

Pharyngeal stimulation

Augmentation of collateral blood flow SPGS

What are the options for impairment?

Promote plasticity - learning

Change propemsity for plasticity

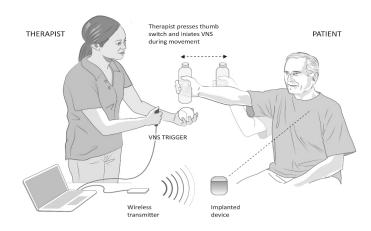
Do these treatments work?

	Impairment	Function	Spasticity	ADLs	Global function
Enhanced therapy	111	1	†		X
Robotics	111				X
Strength	1				X
VR	1				X
CIMT	111	† †	1	11	X
Mirror therapy	1				X
FES / NMES	1		1		X
TMS	11	11		1	X
VNS	111	1			?
tDCS	1		1		X
Botulinum toxin			† ††		

Paired VNS based rehabilitation

FDA IDE #G170031 UK MHRA No #CI/2015/0011 Clinicaltrials.gov NCT03131960

Vagus nerve stimulation paired with rehabilitation for upper 💃 📵 limb motor function after ischaemic stroke (VNS-REHAB): a randomised, blinded, pivotal, device trial

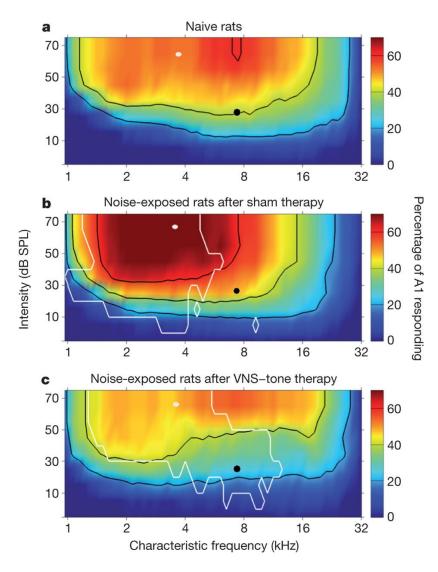

Jesse Dawson, Charles Y Liu, Gerard E Francisco, Steven C Cramer, Steven L Wolf, Anand Dixit, Jen Alexander, Rushna Ali, Benjamin L Brown, Wuwei Feng, Louis DeMark, Leigh R Hochberg, Steven A Kautz, Arshad Majid, Michael W O'Dell, David Pierce, Cecília N Prudente, Jessica Redgrave, Duncan L Turner, Navzer D Engineer, Teresa J Kimberley

Dawson J et al. Lancet. 2021;397:1545-1553

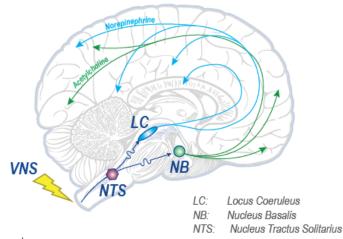
STAGE 1 Screening Pre-implant baseline **VNS Implant & Randomization** Pre-therapy baseline In-clinic therapy (6 wks) In-clinic therapy (6 wks) Active VNS + Rehab Control VNS + Rehab Assessments Assessments Post-day 1 Post-day 1 Home Therapy Home Therapy Post-day 30 0 Post-day 30 Active VNS + Rehab Control VNS + Rehab Post-day 90 0 Post-day 90 **End of Blinded Phase**

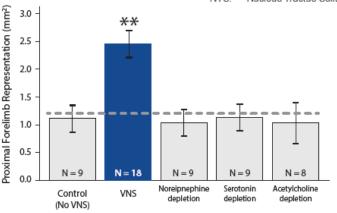
Motor Cortex Implant Lead Vagus Nerve Implanted Device

In-clinic Rehabilitation Therapy



Home-based Rehabilitation Therapy

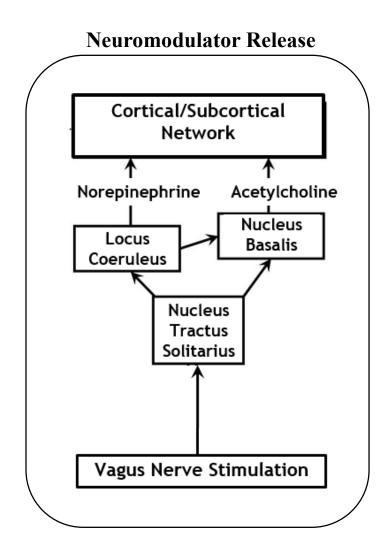



Potential mechanisms of VNS therapy

MECHANISM OF ACTION

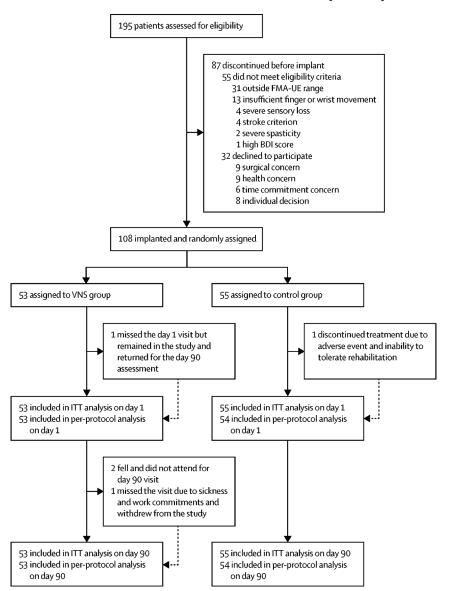
VNS activates **release of neuromodulators** which facilitate behavioral and physiological change

Engineer N et al. Nature. 2010;470:101-104



VNS paired with intense rehabilitation

Intense Rehabilitation



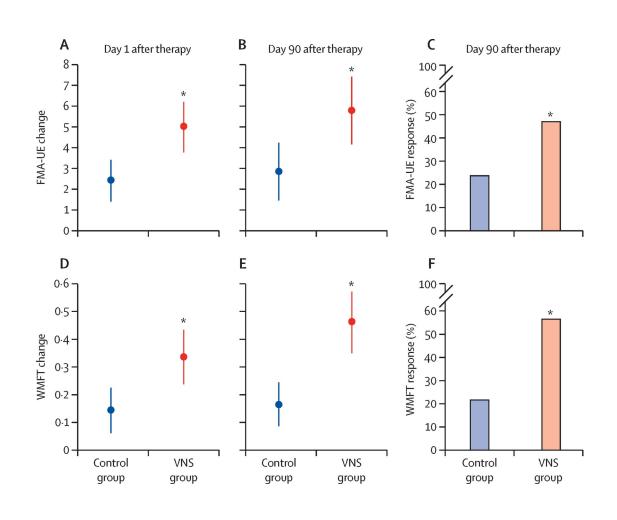
IncreasedPlasticity

107 participants completed intervention, 106 attended for primary outcome

	VNS group (n=53)	Control group (n=55)
Age, years	59.1 (10.2)	61.1 (9.2)
Sex		
Male	34 (64%)	36 (65%)
Female	19 (36%)	19 (35%)
Race*		
White	42 (79%)	43 (78%)
African American	9 (17%)	9 (16%)
Asian, Indian, or other	1 (2%)	4 (7%)
Not reported	1 (2%)	1 (2%)
Time since stroke, years	3.1 (2.3)	3.3 (2.6)
Handedness		
Right	48 (91%)	50 (91%)
Left	4 (8%)	5 (9%)
Ambidextrous	1 (2%)	0
Side of paresis		
Right	25 (47%)	26 (47%)
Left	28 (53%)	29 (53%)
FMA-UE baseline score	34.4 (8.2)	35.7 (7.8)
WMFT-Functional score	2.71 (0.70)	2.83 (0.65)

Data are n (%) or mean (SD). Some percentages can add up to more than 100% due to rounding. VNS=vagus nerve stimulation. FMA-UE=Fugl-Meyer Assessment-Upper Extremity. WMFT=Wolf Motor Function Test. *Participants could select more than one option for race.

Table: Baseline demographics and characteristics of the intention-to-treat population



Safety and adverse events

- 1 VC palsy
- 2 lead replacements required

	Active VNS	Control
Number of serious adverse events	5	3
Number of participants with serious adverse events	5	3
Number of serious adverse device events	0	0
Number of participants with serious adverse device events	0	0
Number of unexpected serious adverse device events	0	0
Number of participants with unexpected serious adverse device events	0	0
Number of NS adverse events	163	171
Number of participants with NS adverse events	43	42
Number of NS adverse device events (possible, probably, definite, total)	12,7,9 (28)	8,4,2 (14)
Number of participants comprising these NS adverse device events	2,4,7 (13)	5,2,2 (9)

VNS Rehab results

- □ N=108
- Average change in VNS group

Was the study blinded?

	Think VNS Group	Think Control Group / Did Not Know	P Value		
VNS (n=49)	9 (18%)	40 (82%)	>0.999		
Control (n=54)	9 (17%)	45 (83%)			
103 participants completed the questions.					

Is this magnitude of treatment effect important?

- Small between group difference
- Absolute change in VNS group larger
- "We see differences of 6 points in clinical practice all the time"

Do we need a 6-point difference between groups?

- Is the response of others relevant to the response of an individual?
- Would we have had a 6-point difference if we had a usual care control?

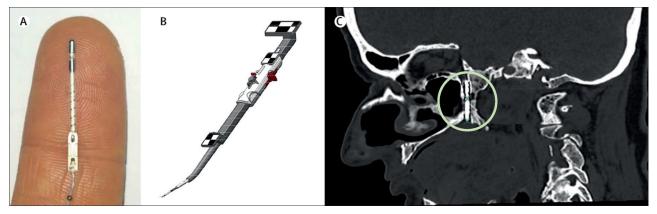
Is a 6 point change the correct definition of important response?

Are risks and costs worth taking?

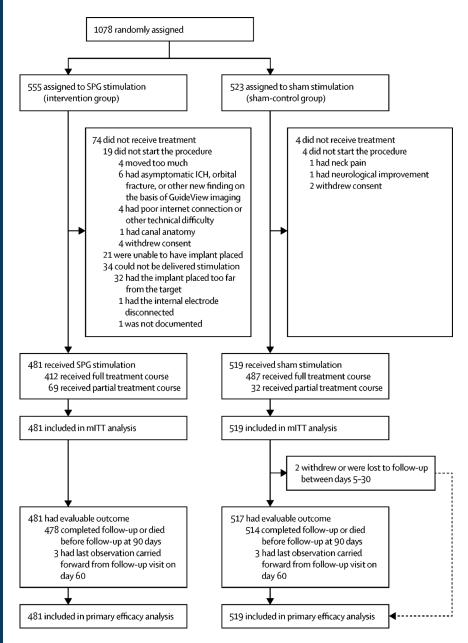
Effects in ICH and very severe impairment

FDA NEWS RELEASE

FDA Approves First-of-Its-Kind Stroke Rehabilitation System

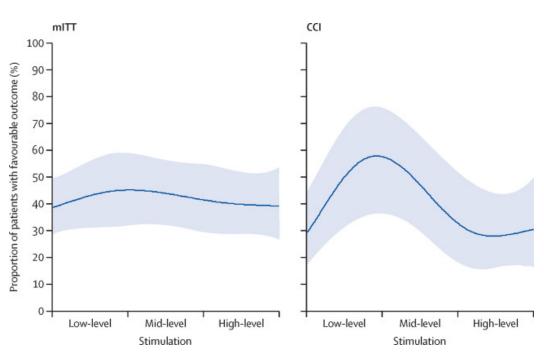

to treat moderate to severe upper extremity motor deficits associated with chronic ischemic stroke

SPGS

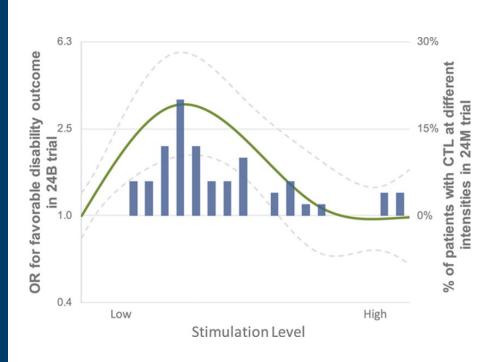


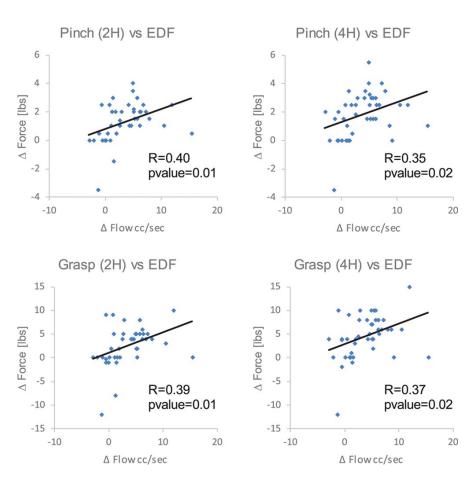
Shuaib et al. Lancet Neuro 2011;10:909-921

Bornstein et al. Lancet 2019;394:219-229



An injectable implant to stimulate the sphenopalatine ganglion for treatment of acute ischaemic stroke up to 24 h from onset (ImpACT-24B): an international, randomised, double-blind, sham-controlled, pivotal trial


Natan M Bornstein*, Jeffrey L Saver*, Hans Christoph Diener, Philip B Gorelick, Ashfaq Shuaib, Yoram Solberg, Lisa Thackeray, Milan Savic, Tamar Janelidze, Natia Zarqua, David Yarnitsky, Carlos A Molina, for the ImpACT-24B investigators



CCI population - improved beyond expectation OR 1·48, 1·05–2·10; p=0·0258

Bornstein et al. Lancet 2019;394:219-229

Pharyngeal stimulation

□ Neuromodulation techniques allow a degree of precision and timing which cannot be achieved by drugs ☐ This pairing with rehabilitation inputs has been shown to drive task specific plasticity ☐ Techniques have already begun to show success in well conducted pivotal trials ☐ VNS ☐ SPGS

Jen Alexander

Elizabeth Colquhoun

Wendy Jackson

Ozzy Dincarslan

Belinda Manak

Lesley McDonald

David Dickie

Neurophysio Scotland

NHS R&D in GGC

