Rééducation robotique

Prof Karin Diserens Unité de Neurorééducation Aiguë (NRA) Service de neurologie, DNC, CHUV, Lausanne

| Université de Lausanne Faculté de biologie et de médecine

Robotic Rehabilitation

Robotic Rehabilitation

Rossum's Universal Robots theater play

Definition Robotic Rehabilitation

Definitiontechnical systemRobotichelping manRehabilitationto do heavy work

Charles Spencer Chaplin in "Modern Times"1936

Vaude Vaude

Types of robots

Active robot: moves plegic part Semi- active robot: assists paretic part with reduced movement

EX: Armeo Spring : different modulation

The ReWalk Device Interface with different parts of body: Exoskeleton

Robotic Rehabilitation

Decade of the brain: Neuroimaging and EEG

Decade of the brain

Merzenich M et al.1988 Jenkins WM,1990 Taub E, 1993

Selective activation

Reorganization of the brain mapping

Synaptic regrowth

Muller D. 2000

Intensive stimulation and synaptic regrowth

 Synaptic regrowth depends on the intensity of the stimulus

Repetitive movement - functional imaging

Table 2 Functional brain activation studies of effects of specific motor upper limb training post-stroke

Study	Sample: size N treat group	Design	Motor paradigm	Intervention	Comparison group	Outcomes	Findings* (functional neuroima
Levy et al. (175)	N = 2, chronic	Case studies	fMRI finger tap	CIMT 6 h/day, 2 weeks	Nil	Grip, MAL, WMFT fMRI: voxel count; LI	Variable: perilesional and bilate vation in M1
Nelles et al. (94)	N = 5, severe paresis	RCT	PET Passive elbow move,	Task-oriented motor training. 4 × 45min/ day, 3 weeks	Stroke, $n = 5$: nonspecific rehabilitation, Healthy, n = 5	FM, NIHSS PET: site, extent	Greater activation bilaterally in parietal cortex, PMC and ipsile: S1M1 over time compared to c
Carey et al. (93)	N = 10, chronic	RCT-crossover design	fMRI finger tracking	Motor learning. Intensive finger tracking:18–20 sessions	Stroke control phase, n = 5; Healthy train, n = 9	Box and block, finger tracking fMRI: LI; ROI	LI – contralesional to ipsilesiona S1M1, M1, S1, PMC activation
Johansen-Berg et al. (95)	N = 7, chronic mild– mod paresis	Case–control before × 2 after × 2	fMRI, hand flex-ext	Progressive exercises, 2 × 30 min/day 90% restraint; 2 weeks	Nil	Motoricity index, grip strength, JHFT fMRI: site; recovery- weighted correlation image	Increased ipsilesional SII, PMC, cerebellum. Laterality shift to c sional M1. Correlated decrease unaffected hand
Schaechter et al. (176)	N = 4, chronic,	Case series	fMRI 4 fingers flex–ext	CIMT 4 h/day; 2 weeks	Healthy, <i>n</i> = 5	Surface EMG, WMFT; MAL, grip strength, FM-UE fMRI: LI (M1)	Trend to reduced LI with shift t contralesional hemisphere
Wittenberg et al. (96)	N = 9, chronic	RCT	PET finger ext (TMS)	CIMT task-oriented 6 h/day,	Stroke, $n = 7.3$ h/day Healthy, $n = 10$	WMFT, MAL, AMPS fMRI: mean voxel in ROIs (S1M1)	Decreased overactivation in les hemisphere
Kim <i>et al.</i> (177)	N = 4	Case series	fMRI repeated fist; finger opposition	CIMT 7 h/day, 2 weeks	Nil	FM; 9-HPT; JHFT fMRI: voxel count	New activation in ipsilesional N SMA ($n = 3$); increase in contra M1 ($n = 1$); increase SMA ($n =$
Liepert e <i>t al.</i> (98)	N = 3, chronic	Case series	fMRI passive hand move (TMS)	CIMT 6 h/day; 2 weeks	Nil	MAL fMRI: site, pre–post subtraction	Decreased activation in ipsilesi S1M1. Decreased inhibition of hand
Lindb <mark>e</mark> rg <i>et al.</i> (178)	N = 2, chronic	Case studies	fMRI passive wrist move	Repetitive active– passive arm move; 4 weeks	Nil	MCP ext, ROM, MAS– UE; 9-HPT fMRI: voxel count, intensity	Increased activation in prefron sensorimotor areas
Luft <i>et al</i> . (97)	N = 9, chronic	RCT Blinded	fMRI elbow movement	Repetitive BATRAC 3 days/week, 6 weeks	Stroke, $n = 12$ Standardized DMTE	FM-UE; WMFT, arm questionnaire, strength fMRI: site	Increased contralesional S1, M ipsilesional cerebellum for BAT not DMTE. Trend for lateraliza
Butler and Page (179)	N = 4, moderate paresis	Case series	fMRI move or imagery	CIMT and mental practice $(n = 2)$; CIMT (n = 1); mental practice (n = 1); 2 weeks	Nil	WMFT, MAL, Sirigu break test; movement imagery questionnaires fMRI: site	Variable across individuals: cer activation; increased bilateral I PMC with CIMT
Dong <i>et al.</i> (99)	N = 8 > 3 months	Exploratory, before, during, after	fMRI repetitive pinch	CIMT 2 weeks	Nil	WMFT fMRI: site, correlation	Linear reduction in contralesio voxel counts over time. Interin variability

Effect of Repetitive Arm Cycling Following Botulinum Toxin Injection for Poststroke Spasticity: Evidence From fMRI

Neurorehabilitation and Neural Repair 24(8) 753–762 © The Author(s) 2010 Reprints and permission: http://www. sagepub.com/journalsPermissions.nav DOI: 10.1177/1545968310372138 http://nnr.sagepub.com

Karin Diserens, MD¹, Dieter Ruegg, PhD², Raimund Kleiser, PhD^{3,4}, Sandrine Hyde, MD², Nicolas Perret⁵, Philippe Vuadens, MD⁶, Eleonora Fornari, PhD¹, Francois Vingerhoets, MD¹, and Rüdiger J. Seitz, MD^{3,4}

Double crossed over randomized study

N=9

3x/ week during 3 months

Vaud

Research Articles

Effect of Repetitive Arm Cycling Following Botulinum Toxin Injection for Poststroke Spasticity: Evidence From fMRI

Neurorehabilitation and Neural Repair 24(8) 753-762 Reprints and permission: http://www. sagepub.com/journalsPermissions.nav

Karin Diserens, MD¹, Dieter Ruegg, PhD², Raimund Kleiser, PhD^{3,4}, Sandrine Hyde, MD², Nicolas Perret⁵, Philippe Vuadens, MD⁶, Eleonora Fornari, PhD¹, Francois Vingerhoets, MD¹, and Rüdiger J. Seitz, MD^{3,4}

Double crossed over study N=9 3x/ week during 3 months **Changement of group** 3x/week during 3 months

© The Author(s) 2010 DOI: 10.1177/1545968310372138 http://nnr.sagepub.com

+ Botox

Repetitive movement increases the effect of Botox

- → Affected Hemisphere: MISI
 → Non- affected Hemisphere: SII
- → Improvement of motricity + spasticity by sensorial input

Decade of brain: Understanding of neuronal plasticity: Neuroimaging and EEG

- Repetive movement
- Shaping
- Neurosensorial stimulation and biofeedback
- Motivation

Condition of (Motor) Learning: Synaptic regrowth

- \rightarrow Intensive stimulation
- \rightarrow LTP (Long terme potential)
- \rightarrow Increased connectivity

Vaud

Repetitive movement

- 60% of the body weight is taken off
- 45 min. 5 times a week
- Stop when walking independently

Taub E, Uswatte G, Elbert T. New treatments in neurorehabilitation founded on basic research. Nature Reviews Neuroscience 2002; 3: 228-236

Crit Care Med. 2009 Sep;37(9):2499-505.

Early exercise in critically ill patients enhances short-term functional recovery.

Burtin C, Clerckx B, Robbeets C, Ferdinande P, Langer D, Troosters T, Hermans G, Decramer M, Gosselink R. Faculty of Kinesiology and Rehabilitation Sciences (CB, BC, CR, DL, TT, RG), Katholieke Universiteit Leuven, Leuven, Belgium.

Treatment group n= 26 Control :n=32 20 min, 5th day, 5/7 Median cycling sessions: 7 (4-11)

Figure 3. A, Boxplot of 6MWD at hospital discharge. 6MWD, 6-min walking distance. *p < .05 compared with control group. B, Boxplot of SF-36 PF score at hospital discharge. SF-36 PF, "Physical Function" item of Short Form 36 Health Survey Questionnaire. †p < .01 compared with control group.

Improvement of walking speed

Improvement of the isometric strength of the quadriceps

Figure 4. Isometric quadriceps force at intensive care unit (*ICU*) discharge and at hospital discharge. Data are presented as mean and standard deviation. *QF*, quadriceps force; *hospital*, day of hospital discharge. *p < .01 between ICU and hospital discharge; $\dagger p < .05$ compared with control group.

Increased connectivity by neurosensorial stimulation

Increased connectivity by: Motivation

Neurotransmitters nuclei projections and RSNs. Dopamine: dopaminergic pathways and RSNs: the nigrostriatal pathway projects mainly to core regions of the SMN, whereas the mesocorticolimbic pathway to the SN. Serotonin: serotonergic pathways and RSNs: the main projections of the RNi involve regions of the SMN and DMN. SNc substantia nigra pars compacta, VTA ventral tegmental area, DStr dorsal striatum, VStr ventral striatum, DMT dorsomedial thalamus, pACC perigenual anterior cingulate cortex, PCC posterior cingulate cortex, vmPFC ventromedial prefrontal cortex, SM sensorimotor, RNi raphe nuclei, dACC dorsal anterior cingulate cortex, RSNs resting-state networks, SMN sensorimotor network, DMN default-mode network, SN salience network

Conio et al. Opposite effects of dopamine and serotonin on resting-state networks: review and implications for psychiatric disorders. Mol Psychiatry, 2020

Task specific: Neuromotorsensorial + cognitive + motivation

(a) Stage 1 of drinking water task (reaching stage)

(b) Stage 2 of drinking water task (lifting stage)

No motivation without a therapist

Robotic Rehabilitation

Robotic Rehabilitation

C : UV

ORIGINAL ARTICLE

Arch Phys Med Rehabil Vol 88, February 2007

Robotic-Assisted Rehabilitation of the Upper Limb After Acute Stroke

Stefano Masiero, MD, Andrea Celia, MD, Giulio Rosati, PhD, Mario Armani, MD

Fig 2. Diagram of the NeReBot. The angular position of each arm can be manually adjusted within a range of ±90° and the distance between each wire entry point and the main column axis can be independently set within a range of 200 to 700mm.

Training by robot consisted of peripheral manipulation of the shoulder and elbow of the impaired limb, correlated with visual stimuli

Interventions: ACUTE stroke!

Patients of both groups :

same dose and length per day of standard post stroke multidisciplinary rehabilitation

+ individual adaptation of robotic fixation by therapist. Experimental group (n=17):

early sensorimotor robotic training, 4 hours a week for 5 weeks; + Robotic: 4 hours/ week for 5 weeks; **Control group** (n18) idem but:

- Robotic 30 minutes, twice a week (1h/w) !!
- Robotic device unimpaired upper limb.
- Training by robot :

With individual adaptation by therapist

Conclusions:

Robotic therapy + to conventional therapy

- \rightarrow greater reductions in
 - motor impairment
 - improvements in functional abilities.

"Robotic therapy may therefore effectively complement standard rehabilitation from the start"

Received: 12 April 2020 Revised: 9 June 2020 Accepted: 12 June 2020	
DOI: 10.1002/brb3.1742	
DOI: 10.1002/0100.1742	
REVIEW ARTICLE	

Robot-assisted therapy for upper-limb rehabilitation in subacute stroke patients: A systematic review and metaanalysis

Wai-tong Chien¹ | Yuen-yu Chong¹ | Man-kei Tse¹ | Cheuk-woon Chien² | Ho-yu Cheng¹

Methods: Randomized controlled trials (RCTs) published between January 1, 2000 - December 31, 2019 **Results:**

- Eleven RCTs **involving 493** participants - were included for review.

-were nonsignificant (all *p*s ranged .16 to .86). The quality of this evidence was generally rated as low-to-moderate. **Conclusion:**

Robot-assisted therapy produced benefits similar, **but not significantly**

→ using head-to-head comparison

→ Future studies may integrate the fact:

the less labor-intensive RT may offer important advantages over currently available standard care, in terms of improved convenience, better adherence, and lower manpower

Acute phase of stroke: Intermediate care

Article

Early mobilization out of bed after ischaemic stroke reduces severe complications but not cerebral blood flow: a randomized controlled pilot trial

Karin Diserens¹, Tiago Moreira¹, Lorenz Hirt¹, Mohamed Faouzi², Jelena Grujic¹, Gilles Bieler³, Philippe Vuadens⁴ and Patrik Michel¹

CLINICAL REHABILITATION

Clinical Rehabilitation 26(5) 451–459 © The Author(s) 2011 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/0269215511425541 cre.sagepub.com

SAGE

Very Acute phase of stroke: intensive care

Therapeutic approach by the NRA

A. Pincherle, J. Jöhr, L. Pancini, L. Leocani, L. Dalla Vecchia, P. Ryvlin3, N. Schiff, K.Diserens Frontiers 2020

Therapeutic approach by the NRA (I) Early Mobilization

In bed

Out of bed

Robotic: Motomed®

Vaud

Therapeutic approach by the NRA

UNIL | Université de Lausanne Faculté de biologie et de médecine

Vaud

Therapeutic approach by the NRA (II) Early Verticalization

Robotic: Erigo®

Direction of gravity (standing upright)

better awareness better sensitivomotor rehabilitation

Vaud

FOR WHO?

How much: Intensity?

 Randomized Controlled Trial
 > Eur J Phys Rehabil Med. 2018 Jun;54(3):408-418.

 doi: 10.23736/S1973-9087.16.04224-6. Epub 2016 Aug 30.

High-intensity treadmill training improves gait ability, VO2peak and cost of walking in stroke survivors: preliminary results of a pilot randomized controlled trial

Daniele Munari ¹, Anna Pedrinolla ², Nicola Smania ³, Alessandro Picelli ³, Marialuisa Gandolfi ³, Leopold Saltuari ^{4 5}, Federico Schena ²

Background: Previous studies documented beneficial effects of **aerobic exercises on cardiovascular fitness and gait ability. Aim:** to compare the effects of a high-intensity treadmill training (HITT)

against low-intensity treadmill training (LITT)

- on gait ability
- quality of life
- cardiorespiratory fitness VO2peak
- and cost of walking in chronic stroke subjects.

Design: Randomized, controlled pilot study. **Population: n=16 ;** HITT (N.=8) or in the LITT (N.=8).

Conclusions:

- HITT :- feasible training
 - improvement in gait ability
 - enhanced VO2peak
 - reduction in cost of walking compared to LITT.

Canton de Vaud

ORIGINAL RESEARCH

Comparison of Robotics, Functional Electrical Stimulation, and Motor Learning Methods for Treatment of Persistent Upper Extremity Dysfunction After Stroke: A Randomized Controlled Trial

Jessica McCabe, MPT,^a Michelle Monkiewicz, DPT,^a John Holcomb, PhD,^b Svetlana Pundik, MD, MS,^a Janis J. Daly, PhD, MS^a

Methodology

Design: Single-blind, randomized trial

Participants: (N=39)

>1 year post-single stroke35 completed the study

eted the study

Interventions: 12 weeks

All groups received treatment **5d/wk for 5h/d** (60 sessions), with unique treatment as follows:

ML (Motor learning) alone (n=11) **(5h/d** partial- and whole-task practice of complex functional tasks),

Robotics plus ML (n=12) (3.5h/d of ML and 1.5h/d of shoulder/elbow robotics flexion-extension -horizontal)

FES plus ML (n=12) (**3.5h/d of ML** and **1.5h**/d of FES wrist/hand coordination training)

Results

				Median Gain		
Treatment		Pretreatment	Posttreatment	Score (95% CI)		Mean Gain
Group	Coordination Measure	(points)	(points)	(points)	Р	Score
ML	FM	23.6±5.8	33.5±8.3	9 (7.5-12.5)	.003*	11
	FM scale for shoulders/elbows	12.7±2.9	16.4±3.9	3.5 (2.5-4.5)	.003*	4
	FM scale for wrists/hands	9.1±2.6	14.7±4.7	5 (4.0-7.5)	.003*	6
FES+ML	FM	23.5±6.5	32.3±7.9	8 (5.5-12)	.002*	10
	FM scale for shoulders/elbows	12.7±3.5	16.5±3.9	4 (2.0-6.0)	.005*	4
	FM scale for wrists/hands	8.8±3.5	13.4±4.2	5 (2.0-7.0)	.003*	5
ROB+ML	FM	23.6±5.9	31.3±6.2	7.8 (4.5-11)	.003*	8
	FM scale for shoulders/elbows	12.9±1.9	16.6±2.5	3.5 (2.5-5.0)	.002*	3
	FM scale for wrists/hands	8.3±4.3	12.0±4.1	4.0 (1.5-5.0)	.007*	4

Conclusion

Severely impaired stroke survivors with persistent (>1y) upperextremity dysfunction \rightarrow clinically and statistically significant gains in coordination and functional task performance with - robotics plus ML, FES plus ML, and ML alone -in an intensive and long-duration intervention;

- no group differences were found.

J McCabe et al. Archives of Physical Medicine and Rehabiliation 2015.

Conclusion perspective

Additional studies are warranted to determine the effectiveness of these methods in the clinical setting

J McCabe et al. Archives of Physical Medicine and Rehabilitation 2015. Mehrholz, Platz et al., Chochrane Database of Systematic Reviews, 2018.

Good outcome condition of standard therapy + Robotic

Angl nom	Angl adj	Français nom	Français adjectif	Signification
✓ Efficacy	Efficient, methodical	Efficacité	Efficace	Given intervention in an ideal controlled condition Scientific good study methodology
Effectiveness	Effective	Efficacité, efficience	Efficace, effectif	Meaningful effect Working well, on patients in a NORMAL condition
Efficiency	Efficient	Efficacité, efficience, rendement	Efficace, efficient	Most economical way with good input and output

Conclusion perspective

Additional studies are warranted to determine the effectiveness of these methods in the clinical setting

- 1. As early as possible
- 2. Enriched environment → motivation ↑
- 3. Individual goalassessment

J McCabe et al. Archives of Physical Medicine and Rehabilitation 2015.

: : UI/

Brain Repair Enriched Environment : animal concept

Neurobiology of Learning and Memory, VoL147, 2018: 54-6

NeuroRehabilitation 44 (2019) 545–554 DOI:10.3233/NRE-192692 IOS Press

2019

Neurosensory stimulation outdoors enhances cognition recovery in cognitive motor dissociation: A prospective crossover study

Caroline Attwell^{1,*}, Jane Jöhr¹, Alessandro Pincherle, Jean-Michel Pignat, Nina Kaufmann, Jean-François Knebel, Loric Berney, Philippe Ryvlin and Karin Diserens Department of Clinical Neurosciences, Neurology, Acute Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Vaud, Switzerland

Blood pressure +/- SE during 75° the tilt table and tilt stepper test

Rocca et al. BMC Neurology (2016) 16:169 DOI 10.1186/s12883-016-0684-2

BMC Neurology

2016

Open Access

RESEARCH ARTICLE

Sympathetic activity and early mobilization in patients in intensive and intermediate care with severe brain injuries: a preliminary prospective randomized study

A. Rocca^{1*}, J.-M. Pignat², L. Berney², J. Jöhr², D. Van de Ville³, R. T. Daniel¹, M. Levivier¹, L. Hirt⁴, A. R. Luft⁵, E. Grouzmann⁶ and K. Diserens²

Groupe I (n=10)

Groupe II (n=10)

Groupe III (n=10)

Verti calisation

Couché avant 1er lever

Couché après 1er lever

Debout

100.00

95.00

90.00

85.00

80.00

75.00

70.00

Group III

Absence of orthostatic effect By increased endogenous catecholamin production

Perspectives

Robot-assisted gait training for stroke patients: current state of the art and perspectives of robotics

Perspectives to maintain efficacy to improve: effectiveness and efficiency

Perspectives in acute care

Currently

Robotic : Erigo®

Robot of verticalization comes to bed

Robotic : VEMO®

Vaud

Actual reality in post-acute /ambulatory care

- During a therapy day patients spent 50% of their time in bed
- 28% are sitting in their rooms
- only 13% with activities aimed to avoid complications or improve their abilities
- 60% of the time the patients were alone

Standard Hand Exoskeleton

No Robotic rehabilitation without an interdisciplinary team

Perspective : robotic + rehabilitation by virtual reality

Rééducation par la réalité virtuelle **S. Crottaz-Herbette**, Laboratoire des sciences cognitives, CHUV, Lausanne

