STROKE CARE IN INDIA: SMALL SOLUTIONS TO BIG PROBLEMS

M.V.Padma Srivastava MD, DM, FRCP (Edin), FAMS, FNASc, FIAN, FNA

President, AIIMS, Deogarh

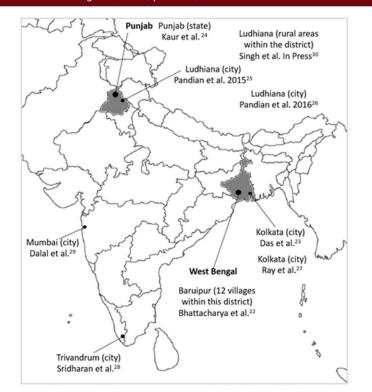
Chairperson, Neurology, PARAS Hospitals, Gurugram

Board of Directors, World Stroke Association

Hon. Professor, UCLAN, UK

Past President, Indian Stroke Association

Ex:Professor, Head, Department of Neurology,


Ex-Chief, Neurosciences Center

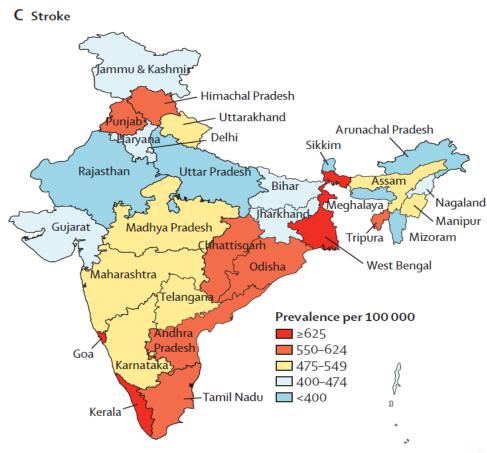
AIIMS New Delhi

Stroke in India: A systematic review of the incidence, prevalence, and case fatality

Stephanie P Jones¹, Kamran Baqai¹, Andrew Clegg¹, Rachel Georgiou¹, Cath Harris¹, Emma-Joy Holland¹, Yogeshwar Kalkonde², Catherine E Lightbody¹, Pallab K Maulik^{3,4,5}, Padma MV Srivastava⁶, Jeyaraj D Pandian , Patel Kulsum, PN Sylaja , PN Caroline L Watkins and Maree L Hackett , on behalf of the NIHR Global Health Research Group on IMPROVIng Stroke carE in India (IMPROVISE) Collaboration

Figure 2. Location of studies assessing the incidence, prevalence, and outcome of stroke in India.

- International Journal of Stroke 0(0) 1-9

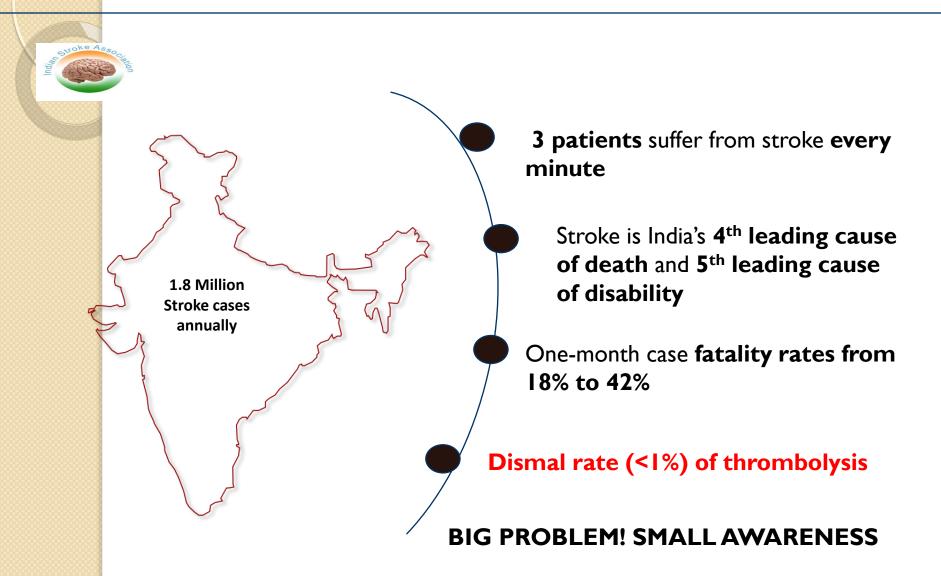

© 2021 World Stroke Organization Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/17474930211027834 journals.sagepub.com/home/wso

(\$)SAGE

- Prevalence-26 to 757/100,000
- Incidence 119-152/100,000
- Case fatality rate: 22 to 42%

The changing patterns of cardiovascular diseases and their risk factors in the states of India: the Global Burden of Disease Study 1990–2016

India State-Level Disease Burden Initiative CVD Collaborators*



Lancet Glob Health 2018; 6: e1339–51

Stroke risk factors in India

																						1
A All strokes					1.							1.							'n			
			4		TON.		r					Ott	5				Ces	S ES	* JOH	Nes	*	
			ق	A 16	7	VICOL ,	OUTH		And		Cen	108.	PATIC				7	Kals,	ellus,	OWS.	orn S	
		6	53	COM		ne V	eml	Les	Canl		Call	Call.	aand				\$	85.55	%.5%	%.53.	85.55	
	Cent	entral Psia	Eastern	inh-income Asia	E E	income North F.	COURTNETIN LAKIN F.	Stell	Andean Latin F.	2 8	Central Latin F.	Tropical Latin F	Skrica and Middle	50	ith Asia	\$	Souther Oceania	East Psia	SOUTH SAME SAME SAME SAME SAME SAME SAME SAME	West Sahara	*ern sub-Saharal	
	Global	al Po	EUROT ,	EURO	back of	Talas	meri	mer.	EUTO	meri	tin To	meri	meri s	le Ez	5 P	cast Asia	Oceania Iec	StAS	Pri.	Pri.	, Ri	, Pri
· -	A)	98	Qe	Qe _	TK.	8	Ø.	\$	Qe	₽ Ø	85	B	B	25x	95	95	[ij	98	B	Ś	B	\$
High systolic blood pressure	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
High body-mass index	2	2	2	2	2	4	2	2	2	2	2	2	2	2	4	5	4	2	4	3	2	3
High fasting plasma glucose	3	3	3	5	3	3	3	3	3	4	3	3	3	3	2	6	2	3	3	4	3	4
Ambient particulate matter pollution	4	4	6	7	13	5	12	6	9	3	6	4	7	4	3	2	12	5	5	9	4	5
Smoking	5	5	4	3	6	2	4	4	4	8	4	6	4	6	6	3	5	4	8	7	5	9
Diet high in sodium	6	10	5	12	14	7	11	10	12	9	14	8	8	17	10	4	8	7	14	5	14	11
Household air pollution from solid fuels	7	14	16	19	20	19	20	19	19	11	5	10	15	14	5	12	3	6	2	2	8	2
High LDL cholesterol	8	8	7	4	5	6	6	9	5	5	7	7	6	5	11	8	11	9	10	12	7	8
Kidney dysfunction	9	9	11	8	8	11	8	11	10	7	8	5	9	7	9	11	7	8	9	10	9	7
Diet low in fruits	10	11	12	11	9	8	10	13	11	13	12	11	13	13	7	13	6	11	6	6	6	6
Diet high in red meat	11	7	9	9	4	10	5	5	6	6	13	9	5	15	19	7	10	14	15	14	11	14
Low temperature	12	6	8	6	10	9	7	8	7	10	19	15	19	8	17	9	15	20	16	15	12	20
Alcohol use	13	12	10	10	7	12	9	7	8	15	9	13	10	20	15	10	14	13	11	11	10	10
Lead exposure	14	17	18	18	16	17	18	17	18	16	11	12	16	10	8	14	17	16	12	13	15	13
Second-hand smoke	16	15	13	14	18	14	16	14	17	18	17	17	17	12	14	15	13	15	18	16	16	16
Diet low in vegetables	17	19	19	17	15	18	14	15	16	12	10	14	11	18	12	19	9	12	7	8	13	12
Diet low in whole grains	18	13	14	13	17	16	15	16	15	17	18	18	18	9	18	16	16	17	17	18	19	17
Low physical activity	19	18	17	16	12	15	17	18	14	19	16	19	12	11	20	18	18	18	19	20	17	18
High temperature	20	20	20	20	19	20	19	20	20	20	20	20	20	19	16	20	20	19	20	19	20	15

Stroke burden in India

Existing treatment gaps in India:

- Use of thrombolysis for stroke (a dismal 0.5% of all strokes receive thrombolysis);
- 24/7 availability of stroke physicians
- Use of stroke care maps and implementation of stroke care pathways.
- Presence of a stroke unit
- A stroke team
- Sufficient community awareness program which are essential key elements necessary to provide optimal stroke care to the community.
- Efficient public emergency ambulance system

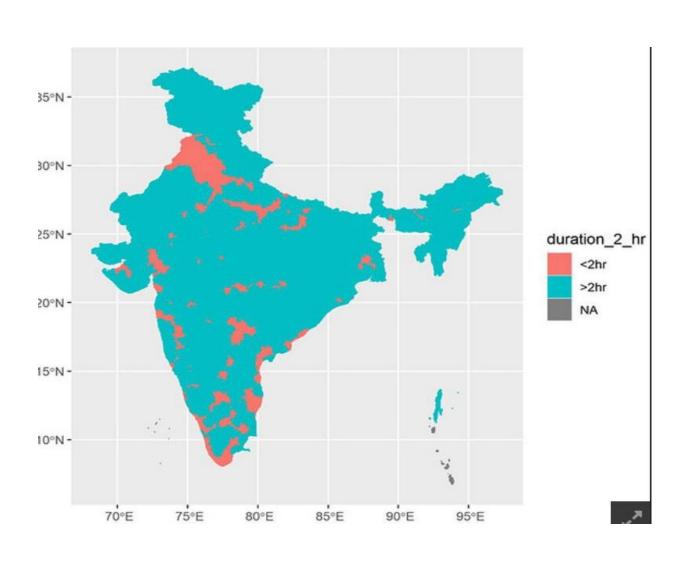
- Per capita gross national income
- Availability of operators and centers
- Presence of pre-hospital stroke-triage systems

Critical components of pre-hospital system for stroke care

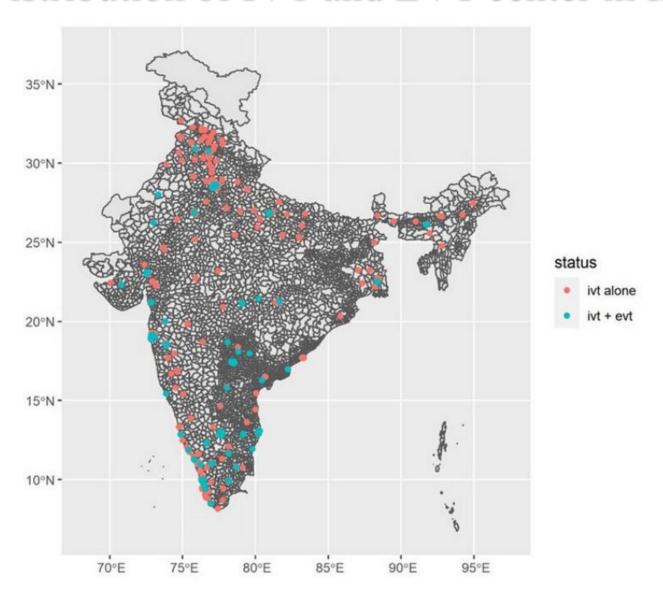
- Quick recognition of stroke symptoms by patients and care givers.
- Awareness about calling ambulance urgently.
- First responder training on clinical stroke assessment.
- Field triage based on stroke severity assessment.
- Pre-Hospital communications with the receiving hospital.
- Rapid inter-hospital transfer as needed.

Some crucial insights from mapping stroke care in India

- In 2020 in India, a remarkably low stroke center rate per million:
 - 0.41 for IVT-C
 - 0.26 for EVT-C
- The median duration to the nearest IVT-C and EVT-C stroke centers was 3.04 hours & 3.46 hours.
- Only 23.9% and 17.6% of the population has 1-hour access to an IVT-C and EVT-C respectively.
- Considerable regional disparities in geographical access to stroke care

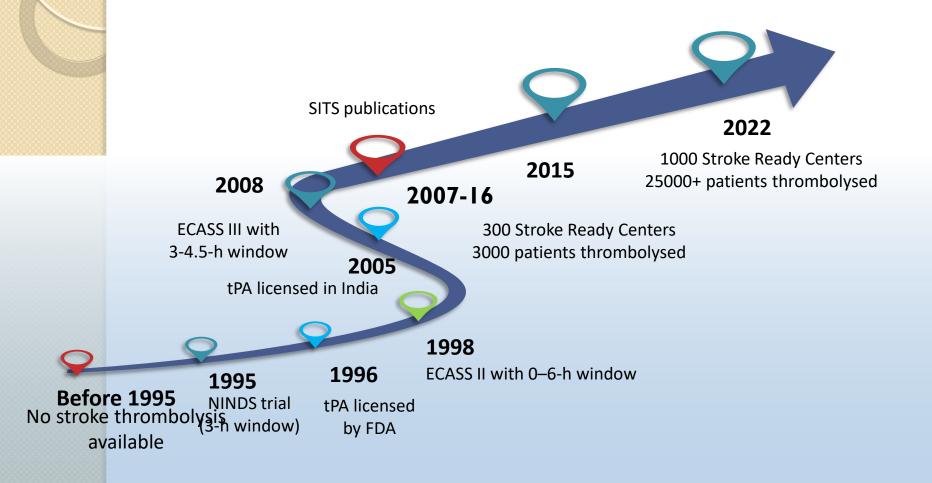

Pronounced stroke care disparity between different zones within India

- This inequity has been noted for overall life expectancy as well.
- Reflection of ?
 - Broader healthcare infrastructure
 - Inequalities arising from combination of geographic limitations
 - Political and socio-economic factors
 - Access to basic public amenities.


Table 2: Summary of travel distance and duration to the nearest stroke center (IVT and EVT-capable) across geographic region in India.

Parameter	Overall	South Zone	West Zone	North Zone	Central Zone	East Zone	North- East Zone
Population Centres	14,452	2,832	2,565	2,434	3,887	2,128	906
IVT Capable Stroke Centres	566	211	167	112	42	23	11
EVT Capable Stroke Centres	361	127	112	64	31	20	7

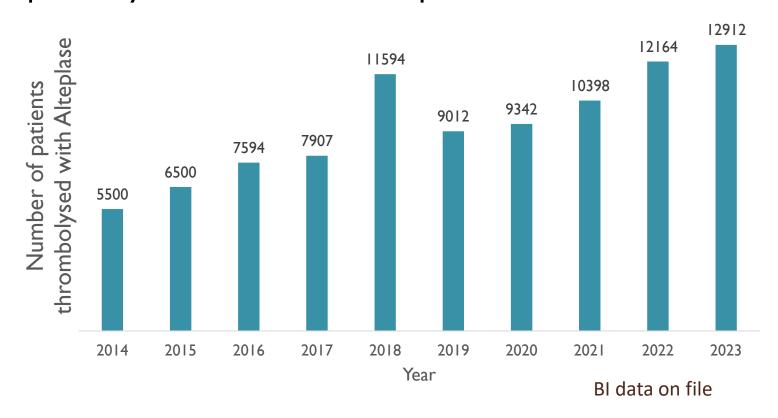
Access to stroke care hospitals in India

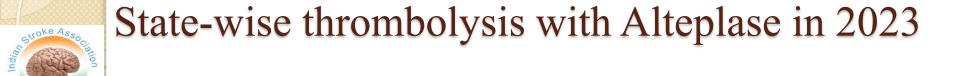

Distribution of IVT and EVT center in India

Main challenges in stroke care in India

- Prehospital stroke systems of care are often underdeveloped in low-middle income countries (LMICs).
- Significant delays in symptom recognition, decision to seek medical assistance & transporting the patient to the stroke center.
- Ambulance services are not used!
- Patient is first transported to the nearest health care facility which may not be a stroke center.
- Multiple delays in the inter-hospital transfer to the stroke center.

Stroke in India: Journey so far!

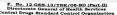




Year-wise patients thrombolysed with Alteplase

Number of patients thrombolysed with Alteplase in past 10 years in India: ~92000 patients

0.



Statewise Alteplase usage	2023/12
State	Total Units
MAHARASHTRA	3,978
KARNATAKA	3,402
TELANGANA	2,514
PUNJAB	1,790
MUMBAI	1,719
UTTAR PRADESH	1,726
GUJARAT	1,517
KERALA	1,211
MADHYA PRADESH	897
ANDHRA PRADESH	701
TAMILNADU	599
HARYANA	630
DELHI	599
RAJASTHAN	451
CHENNAI	395
ASSAM	193
KOLKATA	145
JAMMU & KASHMIR	94
GOA	45
JHARKHAND	36
WEST BANGAL	29
BIHAR	28
ORISSA	22
UTTARAKHAND	4
CHATTISGARH	-
HIMACHAL PRADESH	-

Regulatory issues

Dosage form: Lyophilized powder for injection (20 mg/10 ml

Ingredients	Quantity					
Tenecteplase (TNK-t-PA)	20.0 mg					
Arginine	220.0 mg					
Polysorbate 20	1.72 mg					
O- Phosphoric Acid	68.0 mg					
To be reconstitution with 10 mL Injection I.P./B.P./U.S.P.)	Sterile Water for					

M/s Gennova Biopharmaceuticals Limited, Block-1, Plot No. P-1 & P-2, ITBT Park.

Subject: Application submitted in Form CT-21 for revising the approved indication of the drug Tenecteplase (TNK-tPA) as "Tenecteplase (TNK-tPA) is indicated in thrombolytic treatment of the Acute Ischemic Stroke within 4.5 hrs of the stroke initiation" based on the active PMS study conducted in Acute Ischemic Stroke for adult patient within 3.0 hrs & within 4.5 hrs of stroke onset and for revision in the package insert for extending the administration time of Tenecteplase (TNK-t-PA) for Acute Ischemic Stroke within 4.5 hrs of the stroke onset - Reg

- Application Ref. No. GBL/RA/DCGI/07/2022/118 dated 18.07.2022 submitted to this office vide diary No. 6433 dated 19.07.2022
- Application Ref. No. BIO/CT21/BO/2022/34374 dated 15.10.2022 submitted on Sugam online portal.

 3. Permission for additional indication issued by this Directorate for Acute
- Ischemic Stroke dated 28.07.2016.

 4. MOM of SEC (Neurology & Psychiatry) held on 15.09.2022 & 12.10.2023 at
- CDSCO (HQ), New Delhi.

 5. Permission for amendment in the protocol issued on 04.11.2022 to conduct on-
- going Active PMS study of Tenecteplase (TNK-t-PA) (0.2 mg/kg of the body weight) within 4.5 h of onset of Acute Ischemic Stroke Symptoms vide Protocol No. IRIS-TNK Registry, Version 2.1 dated 29.10.2022.

Permission issued by this office for the drug product Tenecteplase powder for injection 20 mg/10 ml vial for the additional indication as "Tenecteplase (TNK-t-PA) is indicated in thrombolytic treatment of the Acute Ischemic Stroke within 3.0 hrs of the stroke initiation" vide permission dated 28.07.2016 is hereby amended as:

"Tenecteplase (TNK-t-PA) is indicated in thrombolytic treatment of the Acute Ischemic Stroke within 4.5 hrs of the stroke initiation" based on the clinical data generated from the active PMS study.

On 14 December 2023, the Committee for Medicinal Products for Human Use (CHMP) adopted a **positive opinion** recommending a change to the terms of the marketing authorisation for the medicinal product tenecteplase.

Indicated in adults for the thrombolytic treatment of acute ischaemic stroke (AIS) within 4.5 hours from last known well and after exclusion of intracranial haemorrhage.

2016

Tenecteplase (TNK-t-PA) is indicated in thrombolytic treatment of the Acute Ischemic Stroke within 3 hrs of the stroke initiation

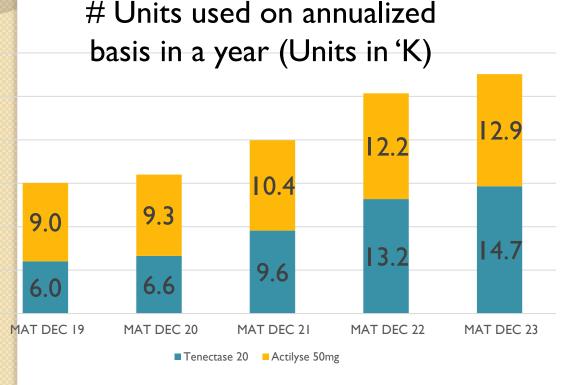
Tenecteplase (TNK-t-PA) is indicated in thrombolytic treatment of the Acute Ischemic Stroke within 4.5 hrs of the stroke initiation

Reference: https://www.ema.europa.eu/en/medicines/human/variation/metalyse

30.0

25.0

20.0


15.0

10.0

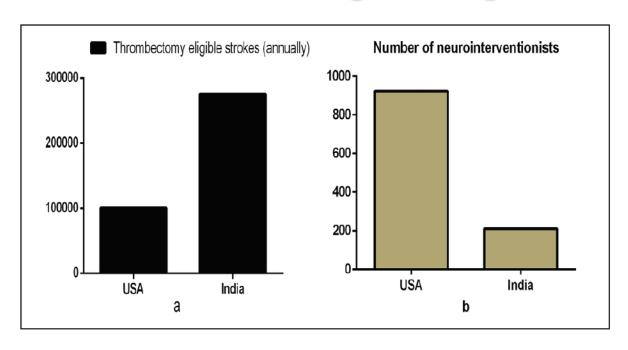
5.0

0.0

Tenecteplase is driving incremental thrombolysis in India

15K to 27K

Total Lysis increase in 5 Yrs


6K to 15K

Tenectase increase in 5 Yrs

Out of total incremental 12K Lysis, 9K is driven from Tenecteplase

- Source- IQVIA- MAT Dec'23
- Alteplase data include usage in PE also

Demand-supply mismatch of neurointerventionalists and thrombectomy-capable centers: 73% belong to the private sector

Some cities single Neurointerventionist covers few centers

Figure 1. A Graphical Comparison of Incidence of Thrombectomy Eligible Strokes in India and USA Annually, Along With the Number of Interventionalists Available to Manage Them.

Distribution of neuro-intervention centers across India

Figure 2. A Graphical Representation Showing the Distribution of Neurointerventional Centers Across the Various States of India.

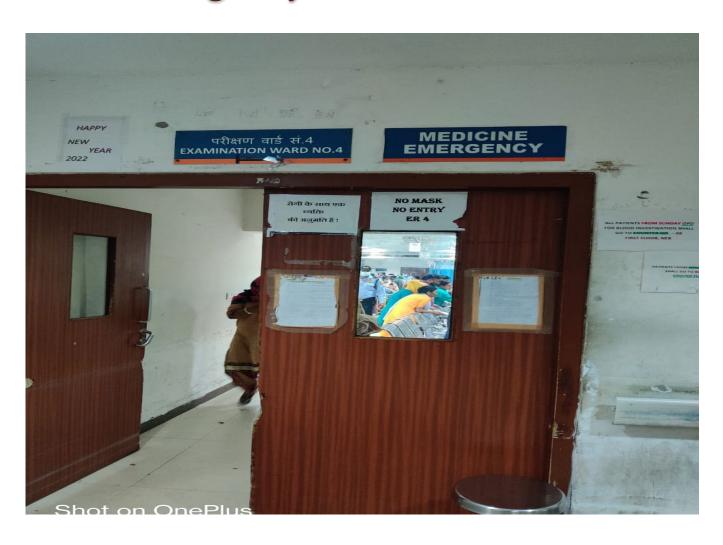
- Predominantly in larger urban areas
- ➤ Inequality between states
- Disparities between the broad 5 regions of north, south, central eastern, and western India.

Mechanical thrombectomy 2020 White paper: Key recommendations for policy makers

- Create a task force that includes neurologists, neurointerventionalists, EMS personnel, community physicians, stroke-trained nurses, stroke coordinators, and administrators who deal with a high volume of stroke cases.
- Assess the stroke disease and economic burden of stroke and LVO stroke in the region of focus.
- Assess the efficacy of the existing systems in place for the management of stroke and identify key gaps.

Mechanical thrombectomy 2020 White paper - 2

- Assess the cost and therapeutic effectiveness of existing public and private health systems and conduct a detailed analysis of clinical and cost benefits to the patients and overall population in your region.
- Help in establishing local and regional certification programs for stroke hospitals to be recognized in offering stroke services.
- Develop a policy framework and specific policies that aim to reduce the burden of stroke and improve clinical outcomes.
- Each region may need a unique set of policies but there are examples of effective policies globally available that can serve as starting points for the region.


Mechanical thrombectomy 2020 White paper - 3

- Create government supported funding mechanisms for patients in resource constrained settings who will benefit from MT for LVO stroke.
- Develop stroke education programs focusing, seeking emergency care, and available stroke system resources.
- Set up specialized regional thrombectomy systems of care that are equipped to carry out MT.
- Increase the number of training programs for neurointerventionalists with an aim to create adequate talent for the management of LVO stroke.

Some images from real world stroke care in India: Triage area

Some images from real workd stroke care in India: Emergency room

Some images from real workd stroke care in India: Heart Command center

Initial assessment and emergency casualty

Casualty medical officer area

Emergency area

"Stroke Unit" (used as storage area!)

Objectives of Telestroke "Optimal Stroke Care for All"

- To make high quality of stroke care available to traditionally under privileged population
- Save time!
- Reduce costs of medical care

Telestroke: India's Option or Necessity?

- Low penetration of healthcare services
- 90% facilities in cities where 30% live!
- Primary health care facilities in rural areas inadequate
- Telestroke: Need of the hour!

Telestroke: The Promise

- Taking modern healthcare to remote areas using information technology
- Significant role in training of medical personnel
- Decrease in price and complexity of IT makes it economically viable

Telestroke: Challenges and Barriers

- Technical: related to the transfer of images as regards quality and clarity
- Inadequate internet connectivity
- Financial constraints
- Social acceptability
- Time constraints

Telestroke: Challenges often seen in low-middle income countries (LMICs)

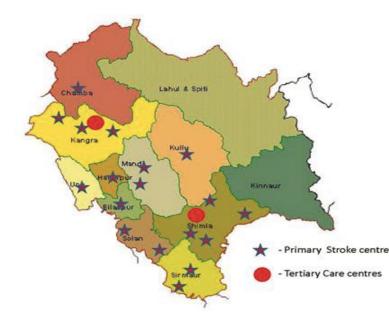
- Telestroke networks provide access to stroke neurologists expertise but still fundamentally rely on local workforce at regional hospitals.
- Integrating telestroke care is not as simple as adding a phone or video call to existing local pathway.
- Effective implementation requires mechanisms to increase awareness of telestroke processes and staff training in hyperacute stroke therapies and workflow.
- Changing workflow practises to suit the uptake of a telestroke pathway relies on staff training and education. The staff in rural and semi urban settings are nonspecialist, over worked, and transient compared to staff based at metropolitan hospitals.

Telestroke: What is required

- Recognition of diverse realities at ground level, of different geographical regions.
- Mapping and recognition of different telestroke network sizes, and levels of complexity.
- Framework of globally applicable and acceptable recommendations, adaptable to diverse resource settings, maintaining core quality standards

A low cost telestroke model in the State of Himachal Prdesh

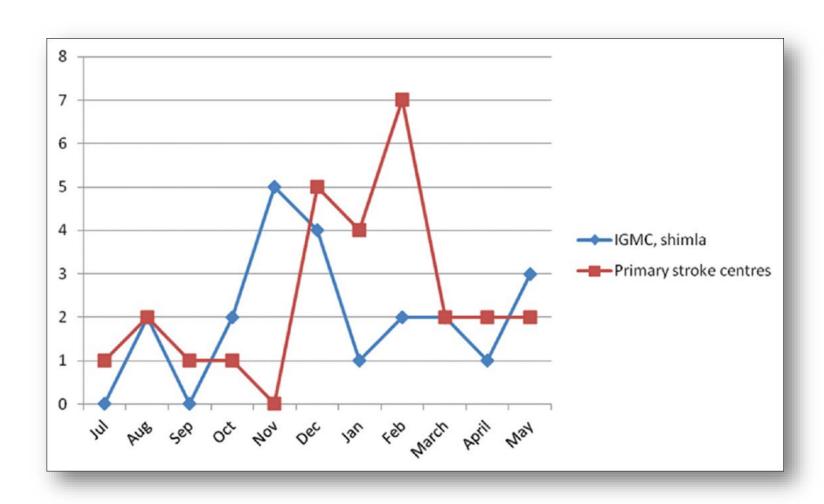
Neurol India. 2016 Sep-Oct;64(5):934-40. doi: 10.4103/0028-3886.190243.

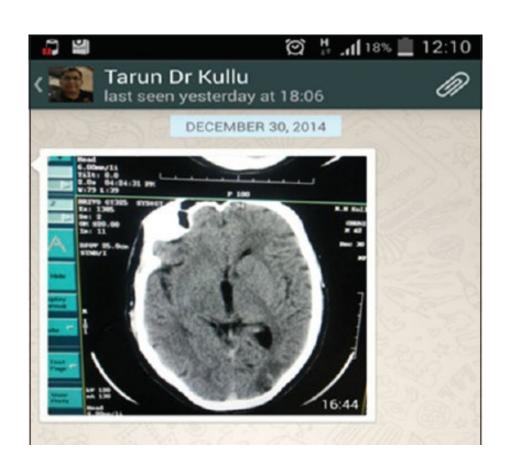

Telestroke in resource-poor developing country model.

Sharma S1, Padma MV2, Bhardwaj A3, Sharma A3, Sawal N1, Thakur S4.

Author information

- 1 Department of Neurology, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India.
- 2 Department of Neurology, All India Institute of Medical Sciences, New Delhi, India.
- 3 Department of Neurology, Dr. Rajendra Prasad Government Medical College, Tanda, Himachal Pradesh, India.
- 4 Department of Radiology, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India.




Telestroke project Himachal Prdesh: Methods

- Project was launched in 2014
- Medical Officers in district hospitals (MBBS graduates, internal medicine post graduates, ER doctors) were trained in treatment of stroke through workshops
- rTPA was made available at all centres free of cost.
- 4 neurologists at 2 tertiary care centres were made available for consult through phone
- Design: Smart phone (WhatsApp) based hub and spoke telestroke model was used with two tertiary care hospitals with neurologists as hub and 12 district hospitals without on site neurologists as spokes

Month-wise comparison of thrombolysis between primary Stroke Centers and tertiary Stroke Center (IGMC, Shimla)

WhatsApp transmission of Computed Tomographic images

Low cost telestroke model in Himachal Prdesh: Publications

Telestroke: India's solution to a public health-care crisis

Stroke is a leading cause of morbidity and mortality in India. Yet much of the country is composed of rural, low-income and middle-income communities that lack access to essential neurological care. Telemedicine is helping to tackle this important problem. Jacquelyn Corley investigates.

Panorama

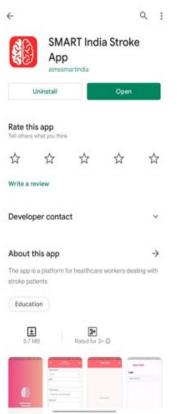
Telestroke a viable option to improve stroke care in India

Padma V. Srivastava¹, Paulin Sudhan², Dheeraj Khurana³, Rohit Bhatia¹, Subash Kaul⁴, P. N. Sylaja⁵, Majaz Moonis⁶, and Jeyaraj Durai Pandian⁷*

International Journal of Stroke

First Published October 1, 2014 https://doi.org/10.1111/ijs.12326

Lancet Neurol 2017


Published Online November 29, 2017 http://dx.doi.org/10.1016/ S1474-4422(17)30423-4

Telestroke using the SMART-India App

Primary purpose of providing a low-cost tele-stroke services of a neurologist and physiotherapist to physicians in district hospitals

SMART INDIA App

Telestroke: preparation of thrombolysis

Telestroke: application of thrombolysis

Telestroke: training of personeel

Mobile stroke units in India

ICMR'S MOBILE STROKE UNIT (MSU), DIBRUGARH, ASSAM PROVIDING STROKE CARE AT PATIENTS' DOORSTEPS IN REMOTE AREAS

Clot Buster Therapy Provided in MSU
Saved a Stroke Patient - A first in Public
Sector in the Country

8th March 2022 : 70 yr male, undiagnosed hypertension presented with left sided paralysis

- Recognized Symptoms Early
- Contacted MSU within 1.5 hr
- MSU dispatched to patient's home approximately 40 Km from Assam Medical College and CT done in MSU: 1 hr
- Time taken from Symptom Recognition to Clot Buster Therapy: < 3 hours!!

ACT FAST!!

Reach Stroke Hospital Early to Prevents
Death and Disability

Simple but structured documentation

14 0 Patient Name - Gronidhan Hant-Add: - Dongancuek, Chabna Block: - Panitola Dist . DBR alate of strake onset - 8/3/22 at 18:30 km Time of call - 19:57 was Thrombolysis done -29.20 was Time of aniend 20:50 has

Restorative strategies after stroke: Indian Pilot Studies

- Autologous BM MNCs IV
- Multi-center trial in 120 pts. DBT
- GCSF in acute ischemic stroke pilot study
- Multi center study DBT
- BM MSCs chronic stroke DST

Cerebrovasc Dis Extra 2011;1:93-104

DOI: 10.1159/000333381 Published online: December 3, 2011 © 2011 S. Karger AG, Basel www.karger.com/cee

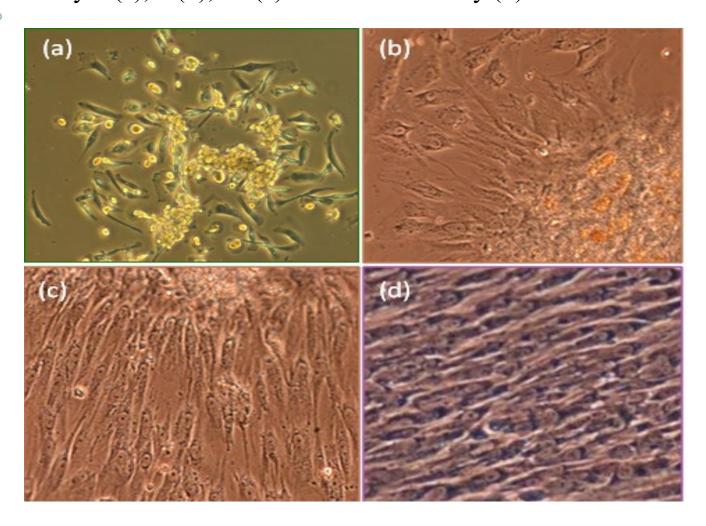
This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License (www.karger.com/OA-license), applicable to the online version of the article only. Distribution for non-commercial purposes only.

Original Paper

Autologous Mesenchymal Stem Cells in Chronic Stroke

Ashu Bhasin^a M.V. Padma Srivastava^a S. Senthil Kumaran^b Sujata Mohanty^d Rohit Bhatia^a Sushmita Bose^d Shailesh Gaikwad^c Ajay Garg^c Balram Airan^e

Departments of ^aNeurology, ^bNuclear Magnetic Resonance and ^cNeuroradiology, ^dStem Cell Facility and ^eDepartment of Cardiothoracic and Vascular Surgery, All India Institute of Medical Sciences, New Delhi, India


RESEARCH ARTICLE

JSRM Code: 008030300134

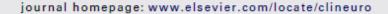
Autologous Intravenous Mononuclear Stem Cell Therapy in Chronic Ischemic Stroke

Bhasin A¹, Srivastava MV¹, Bhatia R¹, Mohanty S¹, Kumaran SS¹, Bose S²

Expansion of mesenchymal stem cells on day 3 (a), 7 (b), 10 (c) and at confluency (d).

Review Article Open Access

Stem Cells in Neurological Diseases: Indian Perspective


Ashu Bhasin1*, Padma Srivastava MV1*, Rohit Bhatia1, Senthil Kumaran2 and Sujata Mohanty8

Clinical Neurology and Neurosurgery xxx (2012) xxx-xxx

Contents lists available at SciVerse ScienceDirect

Clinical Neurology and Neurosurgery

Stem cell therapy: A clinical trial of stroke

Ashu Bhasin^a, M.V. Padma Srivastava^{a,*}, Sujata Mohanty^b, Rohit Bhatia^a, Senthil S. Kumaran^c, Sushmita Bose^d

¹Department of Neurology, All India Institute of Medical Sciences, India, New Delhi, India

²Department of NMR, All India Institute of Medical Sciences, India, New Delhi, India

³Stem Cell Facility, All India Institute of Medical Sciences, India, New Delhi, India

^a Department of Neurology, All India Institute of Medical Sciences, New Delhi 1 10029, India

b Stem Cell facility, All India Institute of Medical Sciences, New Delhi 110029, India

^c Department of N.M.R., All India Institute of Medical Sciences, New Delhi 1 10029, India

d Health Sciences Center, Texas Technical University, El Paso, TX, United States

Stem cell therapy in India: The InveST Study

Stroke

Intravenous Autologous Bone Marrow Mononuclear Stem Cell Therapy for Ischemic Stroke: A Multicentric, Randomized Trial

Kameshwar Prasad, Alka Sharma, Ajay Garg, Sujata Mohanty, Shinjini Bhatnagar, Sharat Johri, Kunwar Karni Singh, Velu Nair, Ravi Shankar Sarkar, Sankar Prasad Gorthi, Kaukab Maqbool Hassan, Sudesh Prabhakar, Neelam Marwaha, Niranjan Khandelwal, Usha Kant Misra, Jayantee Kalita and Soniya Nityanand for InveST Study Group

Stroke. 2014;45:3618-3624; originally published online November 6, 2014; doi: 10.1161/STROKEAHA.114.007028

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2014 American Heart Association, Inc. All rights reserved.

Print ISSN: 0039-2499. Online ISSN: 1524-4628

Advanced physiotherapy regimes can be used in developing countries

- Constraint-Induced Movement Therapy (CIMT)
- Neuromuscular and Muscular Electrical Stimulation (NMES)
- Mirror Therapy
- Virtual Reality

[Downloaded free from http://www.neurologyindia.com on Saturday, February 23, 2013, IP: 14.139.245.2] || Click here to download free Android appli journal

Neural interface of mirror therapy in chronic stroke patients: A functional magnetic resonance imaging study

Ashu Bhasin, M. V. Padma Srivastava¹, Senthil S. Kumaran^{1,2}, Rohit Bhatia¹, Sujata Mohanty^{2,3}

Departments of Neurology, 1.2N. M. R, and 3 Stem Cell Facility, All India Institute of Medical Sciences, New Delhi, India

Volume 9 Number 2 April-June-2015

Indian Journal of
Physiotherapy and Occupational Therapy
An International Journal
An International Journal

DOI Number: 10.5958/0973-5674.2015.00077.5

Comparison of Constraint Induced Movement Therapy and Neuromuscular Electrical Simulation on Clinical Outcomes in Chronic Stroke

Aashrai SV Gudlavalleti 1, Vishal Taimni2, Ashu Bhasin3, M V Padma Srivastava4

¹Research Associate, ²Research Assistant, ³Assistant Professor (DST-INSPIRE Faculty fellowship), ⁴Professor of Neurology; Department of Neurology, All India Institute of Medical Sciences, New Delhi-110029, India

Role of non-invasive brain stimulation

- rTMS
- Transcranial direct current stimulation
- Theta-burst stimulation

CureusPort of Springer NATURE

Review began 06/25/2025 Review ended 07/17/2025 Published 07/23/2025

© Copyright 2025

Bhasin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0., which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

DOI: 10.7759/cureus.88586

Open Access Original Article

Cortical Neural Plastic Changes Post-stroke Using Bicephalic Transcranial Direct Current Stimulation: A Prospective Non-randomized Study

Ashu Bhasin ¹, Gulafshan Iqbal ¹, Rahul Sharma ¹, Senthil S. Kumaran ², Vishnu VY ¹, Padma V. Srivastava ¹

1. Neurology, All India Institute of Medical Sciences, New Delhi, IND 2. Nuclear Magnetic Resonance (NMR), All India Institute of Medical Sciences, New Delhi, IND

Corresponding author: Padma V. Srivastava, vasanthapadma@gmail.com

Abstract

Background

Transcranial direct current stimulation (tDCS) has attracted attention among researchers as it has significant neurorehabilitative effects post-stroke. The purpose of the study was to investigate the safety, feasibility, and probable efficacy of bicephalic tDCS in improving hand function after stroke.

Methods

We conducted a prospective non-randomized controlled study involving two groups of participants with chronic stroke. Participants were allocated to real tDCS (r-tDCS) and age-matched controls to sham tDCS (s-tDCS). The treatment session was for 20 minutes, along with physiotherapy for four weeks. The primary outcome measure was the Fugl-Meyer assessment (FMA), while secondary outcomes were the Action Research Arm Test (ARAT), modified Barthel Index (mBI), Brunnstrom stage, and functional magnetic

Archives of Rehabilitation Research and Clinical Translation

Archives of Rehabilitation Research and Clinical Translation 2020;2:100039

Available online at www.sciencedirect.com

Original Research

Efficacy of Low-Frequency Repetitive Transcranial Magnetic Stimulation in Ischemic Stroke: A Double-Blind Randomized Controlled Trial

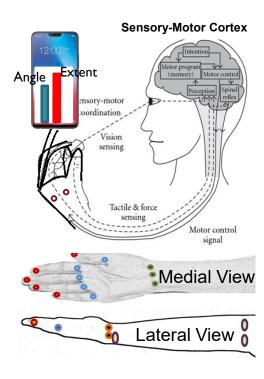
- H. Sharma, MSc, PhD a, V.Y. Vishnu, MD, DM a, N. Kumar, MD b,
- V. Sreenivas, MSc, PhD c, M.R. Rajeswari, MSc, PhD d,
- R. Bhatia, MD, DM a, R. Sharma, BPT a,
- M.V. Padma Srivastava, MD, DM a

Robotics in stroke rehabilitation

Centre for Advanced Research and Excellence in Disability & Assistive Technology (CARE-DAT) 2021

Indian Institute of Technology Delhi (IIT Delhi)

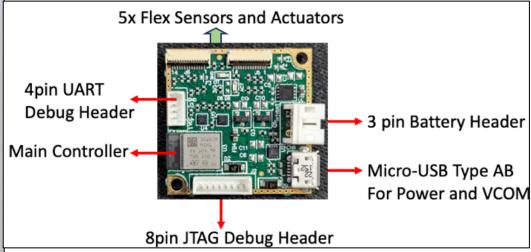
All India Institute of Medical Sciences (AIIMS), Delhi


https://care-dat.iitd.ac.in/index.php Care.dat2021@gmail.com

Robotics in stroke rehabilitation Quantitative NeuroAssessment tools

- Sensor gloves with Neuro Feedback and mobile application
 - Rehabilitation based on sensors perception, analysis, computational diagnosis of non-normalcy, real-time feedback (joint-specific reinforcement)
- Brain-machine interface
- Targeting upper limb (UL)
- User friendly and affordable

Visual +
Kinaesthetic
Feedback



Patent no.

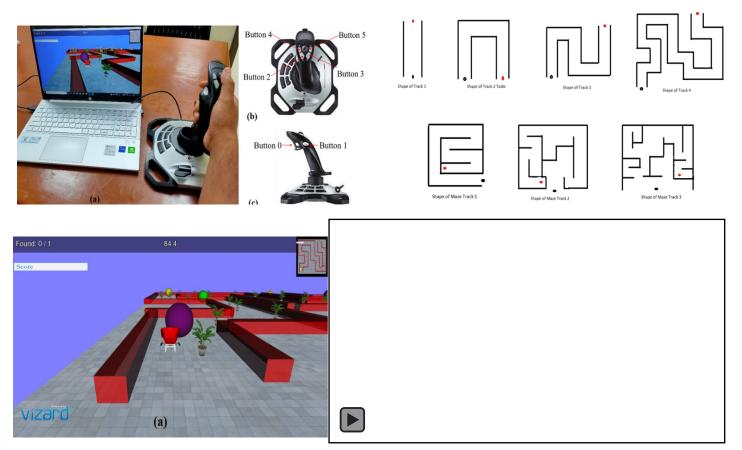
Robotics in stroke rehabilitation PROTOTYPE - 5

Robotics in stroke rehabilitation PROTOTYPE - 6

Final version

Cotton, rexine, foam

14 sensors


14 Actuators

3 Pressure Sensors

TRL: 6-7

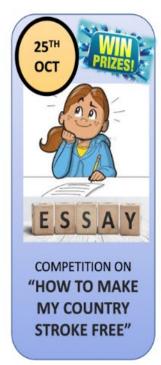
PROTOTYPE – 6: The glove is highly flexible, allowing for easy movement and effortless folding, making it both user-friendly and adaptable for various applications.

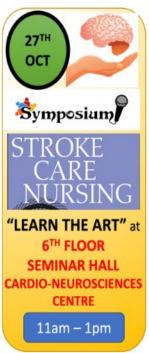
Virtual reality for neuro-rehabilitation combined with a robotic exoskeleton

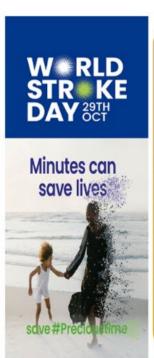
D Nath, N Singh, M Saini, P Srivastava, and Amit Mehndiratta, "Design and validation of Virtual Reality task for Neuro-rehabilitation of distal upper extremities", 2022 in International Journal of Environmental Research and Public Health (IF 3.4), 19 (3), 1442.67.

Education and teaching: primordial!

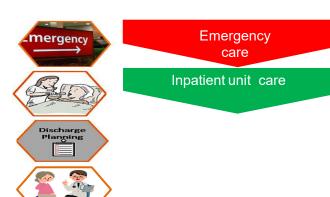
Education and teaching: repeat – repeat-repeat


Information, Education & Communication (IEC) Bureau (govt)




WORLD STROKE WEEK Stroke-WEEK for a Stroke-FREE India

Department of Neurology
All India Institute of Medical Sciences, New Delhi



Stroke awareness education in local language

Implementation research project

IMPlementation of an Evaluation and Treatment Package for Uniform Stroke Care and Outcomes in the Medical Colleges in India: An Implementation Research Study

- Assess current practice of stroke care
- Identify deficiencies and barriers
- Create trained manpower
- Module for training of medical colleges across India

- Implement best practice
- Optimise stroke care
- Improve patient outcomes
- Self sustainable centres for stroke
- Mentoring for district hospitals
- Policy changes to improving stroke care

Indian Stroke Association (ISA) Objectives:

- Education
- Research
- Certification/Endorsement
- Guidelines
- Network: IMA/API/NSI/LAI/Critical care etc.
- Visibility/Partnerships:
 WHO/WSO/AHA/ASA/AINA/ESO/ etc

"Knowing is not enough; we must apply. Willing is not enough; we must do."

Johann Wolfgang von Goethe (1749-1832)