

Sonia Crottaz-Herbette, MER PD Service de Neuropsychologie et Neuroréhabilitation CHUV

Disclosure

Part-time employee at MindMaze SA (Lausanne)

Outline

What is virtual reality based rehabilitation?Examples of treatments using virtual realityIs virtual reality effective for (stroke) rehabilitation?How to integrate VR-based treatment into standard of care?Conclusion, added value of VR-based rehabilitation

Outline

What is virtual reality based rehabilitation?

Examples of treatments using virtual reality

Is virtual reality effective for (stroke) rehabilitation?

How to integrate VR-based treatment into standard of care?

Conclusion, added value of VR-based rehabilitation

What is virtual reality based rehabilitation? VR technology in rehabilitation

 Immersive virtual reality (VR): complete immersion in a simulated experience that can be similar to or completely different from the real world

www.realite-virtuelle.com/ zelda-vr-images-details/

www.fun-simulations.fr

• Augmented reality (AR): adds digital elements to a live (real) view

https://www.fi.edu/difference-between-ar-vrand-mr

Mixed reality (MR): combines elements of both immersive VR and AR, use head mounted display

https://www.tom.travel/2020/02/21/quest-ce-que-la-realite-mixte/

2D screen-based digital environment

What is virtual reality based rehabilitation?

Non immersive VR

2D environment displayed on a screen, hand controllers, trackers on limbs

Immersive VR

3D environment, head mounted display, hand controllers, trackers on limbs

Cogniplus www.schuhfried.com/cogniplus/ trainings/

Computer Assisted Rehabilitation Environment (CAREN) Laboratory, Bethesda USA

Brandin-De la Cruz et al., Rev Neurol., 2020 San Jorge University, Spain

Tyromotion www.tyromotion.com DIEGO Arm robot therapy

All of these set-ups can be used in VR based rehabilitation

Outline

What is virtual reality based rehabilitation?

Examples of treatments using virtual reality

Is virtual reality effective for (stroke) rehabilitation? How to integrate VR-based treatment into standard of care? Conclusion, added value of VR-based rehabilitation?

Motor deficits

Cognitive deficits

With VR: increase frequency and intensity

(a) Rodriguez, J. et al. MDPI, 2020 (b)

MindMotion Go www.mindmaze.ch

Smart Glove www. neofect.com

With VR: increase frequency and intensity Functional electrical stimulation

Bitensky et al., Stroke engine, 2010

Smart Glove www. neofect.com

C-Mill virtual reality treadmill https://agapephysicaltherapy.com/services/c-millvirtual-reality-treadmill

https://www.physiotherapyglobal.org/blogs/vr-virtual-reality-inphysical-therapy-rehabilitation-with-a-restorative-approachby-prakash-pandey/

Gamification of gait training

Kern et al. IEEE Conference on Virtual Reality and 3D User Interfaces (VR). 2019

Scores on the User Experience Questionnaire in the Non-VR and VR groups

Condition Non-VR VR *** Ι Ι *** Т. 2 UEQ Scores (Mean ± SEM) 0 -1 -2 Attractiveness Perspicuity Novelty Stimulation Dependability Efficiency

With VR: increase motivation and attractiveness of the therapy

Kern et al. IEEE Conference on Virtual Reality and 3D User Interfaces (VR). 2019

Virtual reality and cognitive rehabilitation

Standard cognitive rehabilitation of visual neglect deficits

Virtual reality and cognitive rehabilitation

Our pilot study

New VR-based rehabilitation of visual neglect deficits

Virtual reality and cognitive rehabilitation

Our pilot study

New VR-based rehabilitation of visual neglect deficits

mindmaze

Is VR a useful therapeutic tool?

Is VR-based rehabilitation effective?

Outline

What is virtual reality based rehabilitation?

Examples of treatments using virtual reality

Is virtual reality effective for (stroke) rehabilitation?

How to integrate VR-based treatment into standard of care? Conclusion, added value of VR-based rehabilitation?

VR therapy versus Conventional therapy

VR only versus OT only

Comparison 1.1: Upper limb function and activity

Twenty-two studies presented outcomes for upper limb function and activity in a form suitable for inclusion in the metaanalysis (1038 participants) (Adie 2017; Byl 2013; Crosbie 2008; da Silva Cameirao 2011; da Silva Ribeiro 2015; Galvao 2015; Givon 2016; Housman 2009; Kiper 2011; Kong 2014; Levin 2012; Piron 2007; Piron 2009; Piron 2010; Prange 2015; Reinkensmeyer 2012; Saposnik 2010; Saposnik 2016; Subramanian 2013; Sucar 2009; Thielbar 2014; Zucconi 2012). The impact of virtual reality on upper limb function was not significant: standardised mean difference (SMD) 0.07, 95% confidence interval (CI) -0.05 to 0.20, low-quality evidence (Analysis 1.1). Statistical heterogeneity was moderate (I² = 43%). Analysis 1.1. Comparison 1 Virtual reality versus conventional therapy: offecc on upper timb function post intervention, Outcome 1 Upper limb function post intervention (composite measure).

Study or subgroup	Virt	Virtual reality		nvention- therapy	Std. Mean Difference	Welght	Std. Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	Fixed, 95% CI		Fixed, 95% CI
Adie 2017	101	47.6 (14.2)	108	49 (13.6)	-+-	20.73%	-0.1[-0.37,0.17]
Byl 2013	5	27.8 (7.9)	2	30.6 (6.9)		0.56%	-0.31[-1.96,1.35]
Byl 2013	5	28.2 (4.6)	3	30.6 (6.9)		0.72%	-0.38[-1.84,1.07]
Crosbie 2008	9	52.8 (6.9)	9	50.2 (18.9)		1.78%	0.17[-0.75,1.1]
da Silva Cameirao 2011	8	60.4 (7.6)	8	53.4 (8.1)		1.42%	0.84[-0.19,1.88]
da Silva Ribeiro 2015	15	38.7 (19.6)	15	44.7 (14.2)	+	2.93%	-0.34[-1.06,0.38]
Galvao 2015	18	120.9 (13.7)	10	101.7 (18.5)		2.14%	1.2[0.36,2.04]
Givon 2016	20	28.4 (23.1)	21	23.7 (24)		4.05%	0.2[-0.42,0.81]
Housman 2009	14	24.9 (7.4)	14	19.6 (6.7)	++	2.58%	0.73[-0.04,1.5]
Kiper 2011	40	48.9 (15.2)	40	46.4 (17.1)	+	7.93%	0.15[-0.29,0.59]
Kong 2014	33	32.8 (18.2)	34	29.2 (17.5)		6.63%	0.2[-0.28,0.68]
Levin 2012	6	47.3 (11.9)	6	44.9 (11.7)		1.19%	0.19[-0.95,1.32]
Piron 2007	25	51.4 (9.8)	13	45.4 (9.3)	+	3.25%	0.61[-0.08,1.3]
Piron 2009	18	53.6 (7.7)	18	49.5 (4.8)	+	3.39%	0.62[-0.05,1.3]
Piron 2010	27	49.7 (10.1)	20	46.5 (9.7)		4.51%	0.32[-0.27,0.9]
Prange 2015	35	29.6 (17.2)	33	37.4 (17.3)	+	6.58%	-0.45[-0.93,0.03]
Reinkensmeyer 2012	13	27.4 (11.4)	13	23.8 (8)		2.54%	0.35[-0.42,1.13]
Saposnik 2010	9	-19.8 (3.4)	7	-27.4 (8.7)		1.29%	1.15[0.06,2.24]
Saposnik 2016	71	-64.1 (104)	70	-39.8 (35.5)	-+	13.85%	-0.31[-0.64,0.02]
Subramanian 2013	32	43 (15.2)	32	43.9 (14.7)	+	6.36%	-0.06[-0.55,0.43]
Sucar 2009	11	30 (12.4)	11	26.4 (2.3)		2.14%	0.39[-0.45,1.24]
Thielbar 2014	7	50.4 (10.4)	7	43.6 (8.1)		1.29%	0.68[-0.41,1.77]
Zucconi 2012	11	45.2 (20.3)	11	51.8 (13.1)		2.14%	-0.37[-1.22,0.47]
Total *** Heterogeneity: Tau ² =0; Chi ² =38.37	533 , df=22(P=	0.02); I ² =42.67%	505		\bigcirc	100%	0.07[-0.05,0.2]
Test for overall effect: Z=1.14(P=0.2	25)						
			Favours	conventional	-2 -1 0 1 2	- Favours vi	rtual reality

Laver et al., 2017

Effect on the Fugl Meyer UE scale

VR only versus OT only

Comparison 1.2: Upper limb function (Fugl Meyer Upper Extremity Scale)

Sixteen of the trials (with 599 participants) used the Fugl Meyer Upper Extremity (UE) Scale as an outcome measure (Byl 2013; da Silva Cameirao 2011; da Silva Ribeiro 2015; Galvao 2015; Housman 2009; Kiper 2011; Kong 2014; Levin 2012; Piron 2007; Piron 2009; Piron 2010; Prange 2015; Reinkensmeyer 2012; Subramanian 2013; Sucar 2009; Zucconi 2012). The impact of virtual reality as measured by the Fugl Meyer UE Scale showed a small significant effect: mean difference (MD) 2.85, 95% CI 1.06 to 4.65 (Analysis 1.2).

"....virtual reality and interactive video gaming was more beneficial on the Fugl Meyer score than conventional therapy approaches in improving upper limb function..." Analysis 1.2. Comparison 1 Virtual reality versus conventional therapy. enect on upper limb function post intervention, Outcome 2 Upper limb function post intervention (Fugl Meyer).

Study or subgroup	subgroup Virtual reality		Control		Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	Fixed, 95% CI		Fixed, 95% CI
Byl 2013	5	27.8 (7.9)	2	30.6 (6.9)		2.29%	-2.8[-14.64,9.04]
Byl 2013	5	28.2 (4.6)	3	30.6 (6.9)	+	4.14%	-2.4[-11.21,6.41]
da Silva Cameirao 2011	8	60.4 (7.6)	8	53.4 (8.1)	+	5.42%	7[-0.7,14.7]
da Silva Ribeiro 2015	15	38.7 (19.6)	15	44.7 (14.2)	+	2.14%	-6[-18.25,6.25]
Galvao 2015	18	120.9 (13.7)	10	101.7 (18.5)		- 1.87%	19.22[6.1,32.34]
Housman 2009	14	24.9 (7.4)	14	19.6 (6.7)		11.75%	5.3[0.07,10.53]
Kiper 2011	40	48.9 (15.2)	40	46.4 (17.1)		6.39%	2.5[-4.59,9.59]
Kong 2014	33	32.8 (18.2)	34	29.2 (17.5)		4.39%	3.6[-4.95,12.15]
Levin 2012	6	47.3 (11.9)	6	44.9 (11.7)		1.8%	2.4[-10.95,15.75]
Piron 2007	25	51.4 (9.8)	13	45.4 (9.3)		7.97%	6[-0.35,12.35]
Piron 2009	18	53.6 (7.7)	18	49.5 (4.8)		18.28%	4.1[-0.09,8.29]
Piron 2010	27	49.7 (10.1)	20	46.5 (9.7)		9.86%	3.2[-2.51,8.91]
Prange 2015	35	29.6 (17.2)	33	37.4 (17.3)	+	4.77%	-7.8[-16,0.4]
Reinkensmeyer 2012	13	27.4 (11.4)	13	23.8 (8)		5.6%	3.6[-3.97,11.17]
Subramanian 2013	32	43 (15.2)	32	43.9 (14.7)	+	5.98%	-0.9[-8.23,6.43]
Sucar 2009	11	30 (12.4)	11	26.4 (2.3)		5.78%	3.64[-3.82,11.1]
Zucconi 2012	11	45.2 (20.3)	11	51.8 (13.1)		1.58%	-6.6[-20.88,7.68]
Total ***	316		283			100%	2.85[1.06,4.65]
Heterogenoity: Teu ² - 0, Chi ² =22, 78, 0	df=16(P=	0.12); I ² =29.76%					
Test for overall effect: Z=3.12(P=0)						_	
Test for overall effect: Z=3.12(P=0) Favours conventional -20 -10 0 10 20 Favours virtual reality							

Increase dosage thanks to VR interventions

OT+VR versus OT only

Comparison 3.1: Upper limb function

Ten studies with a total of 210 participants presented outcomes for upper limb function (Cho 2012; Coupar 2012; Jang 2005; Kim 2011a; Kwon 2012; Manlapaz 2010; Shin 2014; Sin 2013; Standen 2011; Yavuzer 2008). There was a moderate significant effect that demonstrated that virtual reality intervention was more effective than no intervention: SMD 0.49, 95% CI 0.21 to 0.77, low-quality evidence (Analysis 3.1). There was no statistical heterogeneity.

"Virtual reality may be beneficial when used as an **adjunct to usual care** (to increase overall therapy time)."

Outcome or subgroup title		No. of studies		No. of partici- pants	Statistical method		Effect size
1 Upper limb function (composite measure)		10		210	Std. Mean Differenc 95% CI)	e (IV, Fixed,	0.49 [0.21, 0.77]
Study or subgroup	Virtu	al reality	No in	tervention	Std. Mean Difference	Weight	Std. Mean Difference
	N	Mean(SD)	N	Mean(SD)	Fixed, 95% CI	-	Fixed, 95% CI
Cho 2012	15	21.6 (5.4)	14	17.7 (3.4)		13.45%	0.83[0.07,1.6]
Coupar 2012	4	40.8 (17.2)	2	44.3 (25)		2.71%	-0.14[-1.85,1.56]
Coupar 2012	4	44 (16)	2	44.3 (25)		2.73%	-0.01[-1.71,1.69]
Jang 2005	5	58 (6.2)	5	55 (3.7)		4.83%	0.53[-0.75,1.8]
Kim 2011a	15	64 (26.7)	13	61.2 (18.2)	_ -	14.21%	0.12[-0.63,0.86]
Kwon 2012	13	62.9 (3.5)	13	61.9 (4.5)	-+	13.16%	0.26[-0.52,1.03]
Manlapaz 2010	8	21 (2)	8	18.5 (1.3)	— • — —	6.18%	1.4[0.27,2.53]
Shin 2014	9	51.1 (7.8)	7	40.7 (9.8)		6.66%	1.13[0.04,2.21]
Sin 2013	18	47.7 (15.3)	17	34.6 (20.7)		16.7%	0.71[0.02,1.39]
Standen 2011	9	-2.7 (1.6)	9	-2.9 (1.4)		9.18%	0.11[-0.81,1.04]
Yavuzer 2008	10	3 (1.5)	10	2.8 (0.9)		10.18%	0.15[-0.72,1.03]
Total *** Heterogenetity: rau ¹ =0, chi ² c.ac	110 df=10(P=0.9	59); l ² =0%	100		(\cdot)	100%	0.49[0.21,0.77]
Test for overall effect: Z=3.43(P=0)							
			Favours	conventional	-2 -1 0 1 2	Favours vir	tual reality

Comparison 3. Additional virtual reality intervention: effect on upper limb function post intervention

Specialized VR system versus "off the shelf" system

Comparison 2.3: Specialised virtual reality system or commercial gaming console

Studies utilising virtual reality programs specifically designed for rehabilitation settings demonstrated statistically significant benefits over alternative intervention (SMD 0.17, 95% CI 0.00 to 0.35). In contrast those involving off-the-shelf gaming programs were not found to be significant (SMD -0.02, 95% CI -0.20 to 0.15)

Study or subgroup	Virt	Virtual reality		mparison eatment	Std. Mean Difference	Weight	Std. Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	Fixed, 95% CI		Fixed, 95% CI
2.3.1 Specialised							
Byl 2013	5	28.2 (4.6)	3	30.6 (6.9) —		0.72%	-0.38[-1.84,1.07]
Byl 2013	5	27.8 (7.9)	2	30.6 (6.9)		0.56%	-0.31[-1.96,1.35]
Crosbie 2008	9	52.8 (6.9)	9	50.2 (18.9)		1.78%	0.17[-0.75,1.1]
da Silva Cameirao 2011	8	60.4 (7.6)	8	53.4 (8.1)	++	1.42%	0.84[-0.19,1.88]
Housman 2009	14	24.9 (7.4)	14	19.6 (6.7)	+	2.58%	0.73[-0.04,1.5]
Kiper 2011	40	48.9 (15.2)	40	46.4 (17.1)	+	7.93%	0.15[-0.29,0.59]
Levin 2012	6	47.3 (11.9)	6	44.9 (11.7)		1.19%	0.19[-0.95,1.32]
Piron 2007	25	51.4 (9.8)	13	45.4 (9.3)	+	3.25%	0.61[-0.08,1.3]
Piron 2009	18	53.6 (7.7)	18	49.5 (4.8)	++	3.39%	0.62[-0.05,1.3]
Piron 2010	27	49.7 (10.1)	20	46.5 (9.7)		4.51%	0.32[-0.27,0.9]
Prange 2015	35	29.6 (17.2)	33	37.4 (17.3)		6.58%	-0.45[-0.93,0.03]
Reinkensmeyer 2012	13	27.4 (11.4)	13	23.8 (8)	,	2.54%	0.35[-0.42,1.13]
Subramanian 2013	32	43 (15.2)	32	43.9 (14.7)	+	6.36%	-0.06[-0.55,0.43]
Sucar 2009	11	30 (12.4)	11	26.4 (2.3)	— <u> </u>	2.14%	0.39[-0.45,1.24]
Thielbar 2014	7	50.4 (10.4)	7	43.6 (8.1)		1.29%	0.68[-0.41,1.77]
Zucconi 2012	11	45.2 (20.3)	11	51.8 (13.1)		2.14%	-0.37[-1.22,0.47]
Subtotal ***	266		240		()	48.38%	0.17[-0,0.35]
Heterogeneity: Tau ² =0; Chi ² =18	.16, df=15(P=	0.25); I ² =17.42%					
Test for overall effect: Z=1.92(P	=0.06)						
2.3.2 Gaming							
Adie 2017	101	47.6 (14.2)	108	49 (13.6)		20.73%	-0.1[-0.37,0.17]
la Silva Ribeiro 2015	15	38.7 (19.6)	15	44.7 (14.2)		2.93%	-0.34[-1.06,0.38]
Galvao 2015	18	120.9 (13.7)	10	101.7 (18.5)		2.14%	1.2[0.36,2.04]
Givon 2016	20	28.4 (23.1)	21	23.7 (24)		4.05%	0.2[-0.42,0.81]
Kong 2014	33	32.8 (18.2)	34	29.2 (17.5)		6.63%	0.2[-0.28,0.68]
Saposnik 2010	9	-19.8 (3.4)	7	-27.4 (8.7)		1.29%	1.15[0.06,2.24]
Saposnik 2016	71	-64.1 (104)	70	-39.8 (35.5)		13.85%	-0.31[-0.64,0.02]
Subtotal ***	267		265		(+)	51.62%	-0.02[-0.2,0.15]
Heterogeneity: Tau ² =0; Chi ² =17 Test for overall effect: 7–0.27(P	.76, df=6(P=0.	01); I ² =66.22%					
esciol overall enect: Z=0.27(P	-0.19)						

Analysis 2.3. Comparison 2 Virtual reality versus conventional therapy: upper limb function: subgroup analyses, Outcome 3 Specialised or gaming.

Yes! But:

- effects not always captured (e.g. Fugl Meyer but not composite score)
- when used in addition to standard of care, to increase intensity
- when specific VR programs are used (not "off-the-shelf" program)

Outline

What is virtual reality based rehabilitation?

Examples of treatments using virtual reality

Is virtual reality effective for (stroke) rehabilitation?

How to integrate VR-based treatment into standard of care?

Conclusion, added value of VR-based rehabilitation?

Current management of stroke patients

Where should VR therapy be added?

Early post acute - In clinic SMART-2 trial

Early post-acute patients (< 6 weeks) - N=24

Groups: VR + OT versus OT + OT

2 hours/day (2x1hour), 5 days/week

3 weeks (30 sessions)

MindPod Dolphin (MindMaze SA) and Armeo power (Hocoma AG)

Finding 2: Improvement VR+OT and OT+OT groups > Usual OT care group (retrospective)

SMARTS2 19.0 days post-stroke IQR 12.0, 33.0

Usual care 14.0 days post-stroke IQR 12.5, 35.5

Krakauer et al., Neurorehabilitation and Neural Repair, 2021

Chronic - In clinic (ambulatory)

The Queen Square Trial

Chronic patients (> 6 months) - N=224 (no control group)

6 hours/day, 5 days/week, 3 weeks (90 sessions)

Motor tasks: passive or active, assisted or unassisted (robot), functional or nonfunctional (PT + OT)

Finding 1: Improvement between scores at admission and discharge

Finding 2: Improvement continued after discharge

Ward et al., JNNP, 2019

Chronic

Home telerehabilitation vs In-clinic

Chronic patients (4-36 weeks post-stroke) - N=124

70 min/day (~1 session/day), 6-8 weeks

36 sessions (18 supervised, 18 unsupervised)

Groups: Home versus In-clinic

Figure 2. Examples of Telerehabilitation Therapy Content

Finding 1: Significant improvement for both groups

points). Both groups showed significant treatment-related motor gains, with a mean (SD) unadjusted FM score change from baseline to 30 days after therapy of 8.36 (7.04) points in the IC group (P < .001) and 7.86 (6.68) points in the TR group (P < .001). The adjusted mean change in FM score was 0.06

Finding 2 Similar improvement for both groups

Table 2. Treatment-Related Change in FM Motor Score^a

		ents, No).	EM Score for IC	EM Chappen (TP-IC) Difference	
Model	TR	IC	Total	Group, Mean Change	Between Groups (95% CI) ^b	
Primary analysis						
ITT with multiple imputation of missing outcomes	62	62	124	8.23	0.06 (-2.14 to 2.26)	
Secondary analyses						
ITT with substitution of "worst-best-case" missing outcomes	62	62	124	8.58	-0.19 (-2.29 to 1.92)	
Complete case ITT	59	55	114	8.36	0.00 (-2.27 to 2.27)	
Complete case PP	58	55	113	8.36	-0.15 (-2.41 to 2.10)	
Abbreviations: F IC, in-clinic; ITT, PP, per protocol; telerehabilitation	'M, Fug intent 1 ; TR, n.	l-Meye to treat	r; ;	^a Noninferiority margin is mean change in FM sco group. Data are from ba days after therapy.	30% of re for the IC aseline to 30	

Armeo power (Hocoma AG)

functional or nonfunctional (PT + OT)

Improvement continued

after discharge

How to integrate VR-based treatment into standard of care? Chronic

Cramer et al., JAMAN, 2019

Finding 1

Finding 2

Outline

What is virtual reality based rehabilitation?

Examples of treatments using virtual reality

Is virtual reality effective for (stroke) rehabilitation?

How to integrate VR-based treatment into standard of care?

Conclusion, added value of VR-based rehabilitation

Conclusion, added value of VR-based rehabilitation

Increase dose therapy

(intensity, frequency and/or duration of session)

Standard motor rehabilitation (OT): upper limb training 30 repetitions/session Lang et al., Arch Phys Med Rehabil., 2009

Non-human primates: upper limb training 600 repetitions/session Nudo et al., Science, 1996

Conclusion, added value of VR-based rehabilitation?

- Increase dose
- Increase motivation, attractiveness of the training
- 3D and 360° countless new and well controlled environments
- Real-time feedback and monitoring (remote)
- Lower cost for additional VR-based sessions (?)
- Digital output from sensors
- Ease of eye tracking measures
 - b. Far space kinematics

Easily included in machine learning analyses (e.g. prediction of responders)

Input n

Output n

Conclusion

VR in neurorehabilitation

Effective therapy \rightarrow high intensity

VR based therapy \rightarrow can provide additional therapy sessions

- \rightarrow done in addition to standard of care, not to replace it
- \rightarrow in subacute and chronic stages
- \rightarrow in clinic or at home