NEUROZENTRUM Neurochir

Neurocentre/Neurocentro

Inselspital Universitätsspital Bern Universitäre Psychiatrie Bern

Neurologie Neuropädiatrie Neuroradiologie

WINSELSPITAL

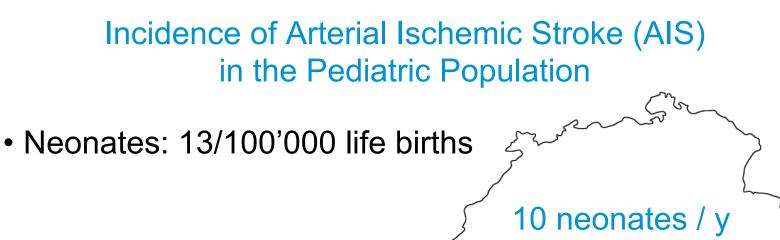
UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE BERN UNIVERSITY HOSPITAL

AVC chez les jeunes causes et devenir

Barbara Goeggel Simonetti

Chef de clinique groupe de recherche neurovasculaire Neurologie Hôpital de l'Ile et Université de Berne

> Médecin adjoint en neuropédiatrie, Ospedale Regionale EOC Bellinzona


barbara.goeggelsimonetti@insel.ch barbara.goeggelsimonetti@eoc.ch

Who has the greatest stroke risk?

A neonate, a young smoker, or a diabetic pensioner?

"Neonates have a > 3x weekly AIS risk of a smoking adult with diabetes mellitus and hypertension"

30 children / y

 Children >1 month – 16 years: 2-3/100'000/y

Grunt S et al. Pediatrics 2015. Mallick AA et al. Eur J Paediatr Neurol 2010 Agrawal N et al. Stroke 2009. Steinlin M et al. Neuropediatrics 2005.

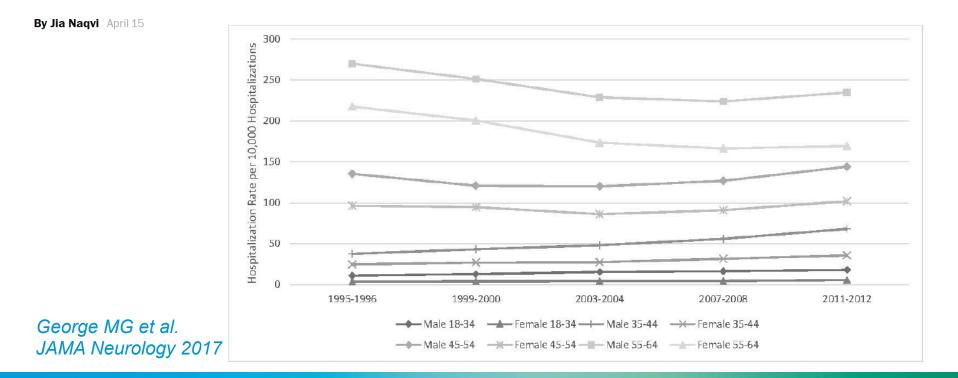
Incidence of AIS in Young Adults

• Helsinki Young Stroke Registry (20-50 years of age):

• 2.4/100'000/y	20-24 y old
• 4.5/100'000/y	30-34 y old
• 32.9/100'000/y	45-49 y old

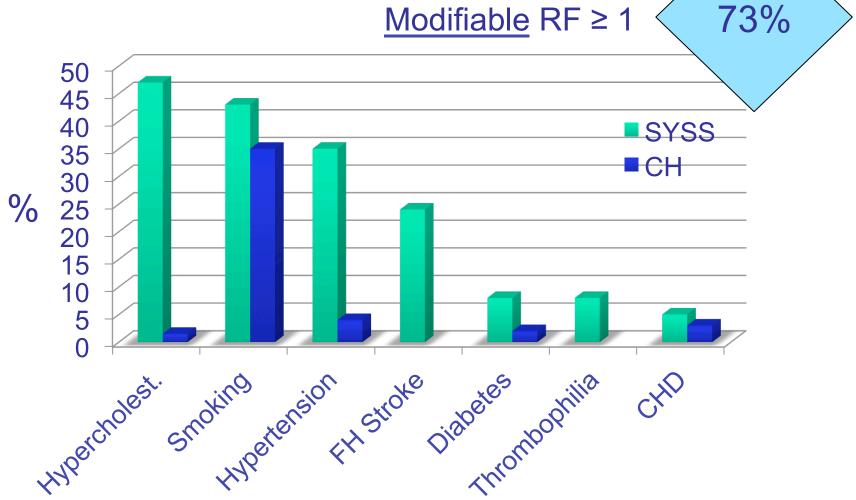
Putaala et al. Stroke 09

• NOMASS: 10/100'000/y (20-45 years of age)


Jacobs et al. Stroke 02

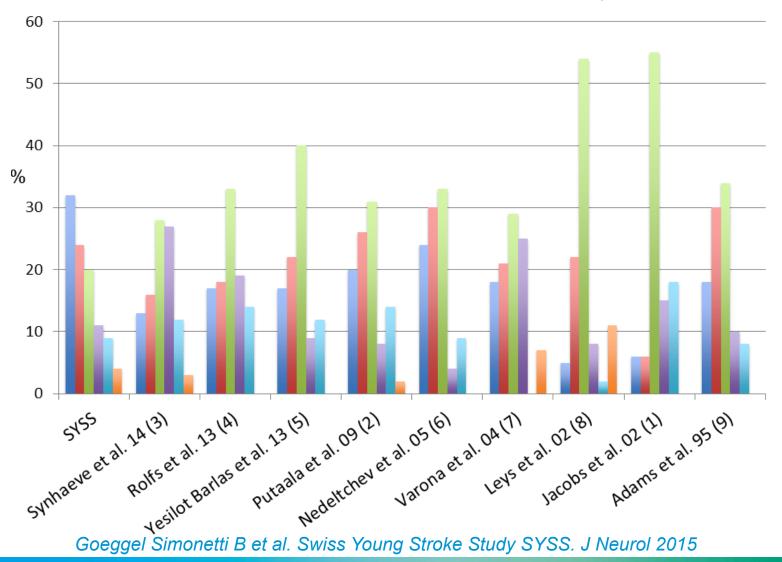
The Washington Post

To Your Health


Stroke rates appear to be rising steadily in young adults

eFigure. Acute Ischemic Stroke hospitalization Rates/10,000 Hospitalizations by Age and Sex, 1995-1996—2011-2012

Risk Factors in Young Adults


Modifiable $RF \ge 1$

Federal Statistical Office (FSO). Swiss Health Survey 2012. www.bfs.admin.ch. Goeggel Simonetti et al. Swiss Young Stroke Study SYSS. J Neurol 2015. Rosamond et al. Circulation 2008.

Etiologies of Arterial Ischemic Stroke in Young Adults

CE Other Unknown LAA SVD Multiple

Etiologies of AIS in Young Adults and Children

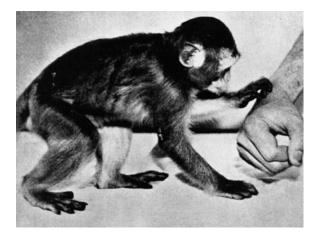
TOAST	Children (n=128)	Young Adults (n=199)
Cardioembolic	22 (17%)	74 (37%)
Large artery disease	0	6 (3%)
Small vessel disease	0	8 (4%)
Other determined etiology	66 (52%)	57 (29%)
- Cervical artery dissection	13 (10%)	45 (23%)
- Moyamoya	7 (5%)	1 (0.2%)
- Vasculitis	4 (3%)	2 (0.4%)
- Inherited metabolic disease	4 (3%)	0
Multiple causes	19 (15%)	2 (1%)
No cause identified	18 (14%)	45 (23%)
Pigi S at al. App Noural 2011		

Bigi S et al. Ann Neurol 2011

Differential Diagnosis

- Trauma
- Migraine
- Seizure of non-AIS origin (e.g. Rolandic seizure)
- Metabolic, non-arterial stroke (MELAS)
- Encephalitis, ADEM, intoxication
- Posterior reversible encephalopathy syndrome (PRES)

Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study


Mark S Pearce, Jane A Salotti, Mark P Little, Kieran McHugh, Choonsik Lee, Kwang Pyo Kim, Nicola L Howe, Cecile M Ronckers, Preetha Rajaraman, Sir Alan W Craft, Louise Parker, Amy Berrington de González

Summary

Background Although CT scans are very useful clinically, potential cancer risks exist from associated ionising Lancet 2012; 380: 499-505

MRI

And so what – the younger the better!?

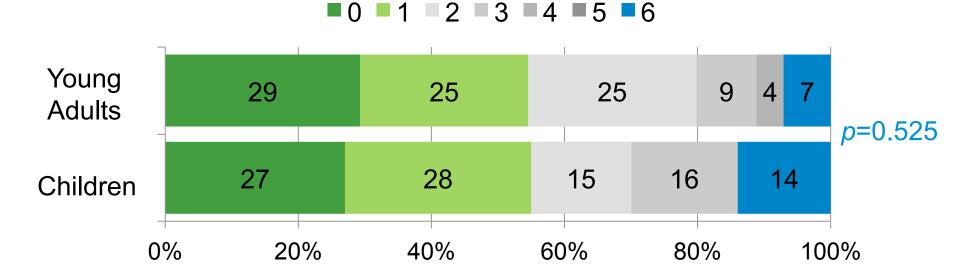
Kennard MA et al. J Neurophysiol 1938

Outcome after Stroke in the Young

Variable	Neonates	Children	Young Adults
Case fatality rate	2-4%	3-15%	3-21%
Sequelae	60%	50-75%	30-77%
Recurrent stroke	<2%	7-40%	4-20%

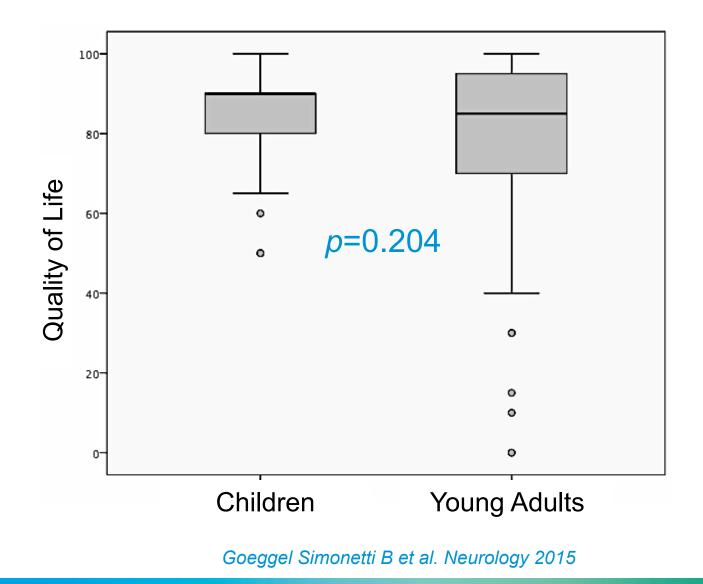
BUT

- Heterogeneous study designs, populations, follow-up periods and -variables
- Inexistence of an outcome variable valid for both children and adults


Goeggel Simonetti B et al. Dev Med Child Neurol 2013 Elbers J et al. J Child Neurol 2013 Neuner B et al. Ann Neurol 2011 Steinlin M et al. Eur J Paediatr 2004 Ganesan V et al. Dev Med Child Neurol 2000

Goeggel Simonetti B et al. J Neurol 2015 Rutten-Jacobs LCA et al. Ann Neurol 2013 Nedeltchev K et al. J Neurol Neurosurg Psychiatry 2005 Varona JF et al. J Neurol 2004 Leys D et al. Neurology 2002

Chabrier S et al. J Pediatr 2016. Grunt S et al. Pediatrics 2015. Kirton A, deVeber G. Stroke 2013


Functional outcome 7 (IQR 4.7 – 9.4) years after stroke

Goeggel Simonetti B et al. Neurology 2015

Quality of Life

Is being plastic fantastic?

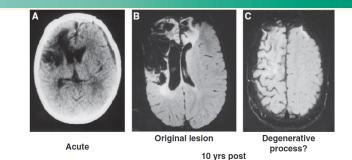
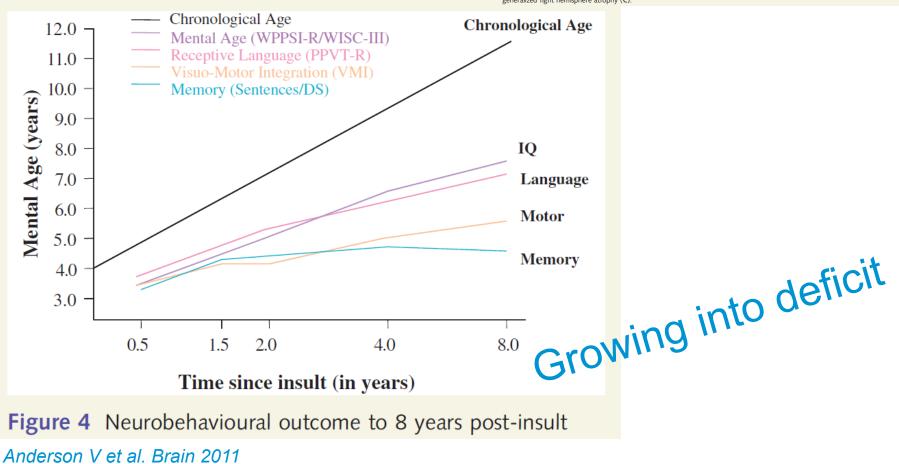



Figure 3 Brain pathology following brain insult in a 3-year old child (J.B.). (A) Acute CT scan, demonstrating extent of initial injury, which includes extensive right frontal and subcortical damage. (B) MRI scans 8 years post-injury, illustrating the residual pathology, as well as generalized right hemisphere atrophy (C).

Take Home

- 1. Stroke happens even in the very young
- Awareness
- 2. Etiologies are different than in the elderly
- Adapt investigations (MRI) and management
- 3. The younger is NOT the better in terms of outcome after brain injury
- ➢ Functional impairment in 1/3 − 2/3 of patients with longer life expectancy
- > If you really want to know about outcome in the young, you need time

