

Symposium annuel Centre cérébrovasculaire - CHUV Jeudi 28 septembre 2017

Causes génétiques des Accidents Vasculaires Cérébraux

G Sirimarco, MD, PhD

Cérébrovasculaire

Approche diagnostique Quand suspecter une cause génétique?

- Sujet jeune (<55 ans)</p>
- ➤ Pas ou peu de FRVs
- Pas de cause
- > Tableau atypique
 - → Clinique & radiologie

Causes génétiques d'AVC

Vasculopathies

- **CADASIL**
- **CARASIL**
- ■COL4A1
- Angiopathies amyloides héréditaires
- Cavernomatoses familiales
- ■Rendu-Osler
- ■Vasculopathies cérébro-rétiniennes (HERNS)
- **■**CRMCC et COATS
- PADMAL
- ■Ehlers-Danlos IV
- ■Marfan
- Pseudoxantome élastique
- ■Neurofibromatose type 1
- ■Moya-Moya familiaux

Métaboliques

- ■Maladie de Fabry
- Mitochondriopathies
- Hyperhomocystéinémie
- ■Dyslipidémie familiale

Cardiologiques

- Myxomes familiaux
- Cardiomyopathies familiales
- Arythmies familiales

Hématologiques

- ■Drépanocytose
- Thrombophilies

Causes génétiques d'AVC

Vasculopathies

- CADASIL
- **CARASIL**
- **■**COL4A1
- Angiopathies amyloides héréditaires
- Cavernomatoses familiales
- Rendu-Osler
- ■Vasculopathies cérébro-rétiniennes (HERNS)
- ■CRMCC et COATS
- PADMAL
- Ehlers-Danlos IV
- Marfan
- Pseudoxantome élastique
- ■Neurofibromatose type 1
- ■Moya-Moya familiaux

Métaboliques

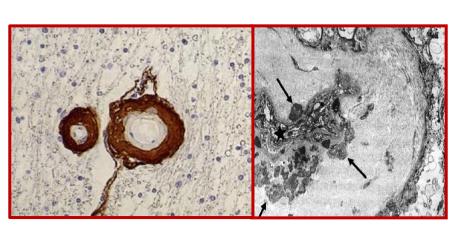
- Maladie de Fabry
- Mitochondriopathies
- Hyperhomocystéinémie
- Dyslipidémie familiale

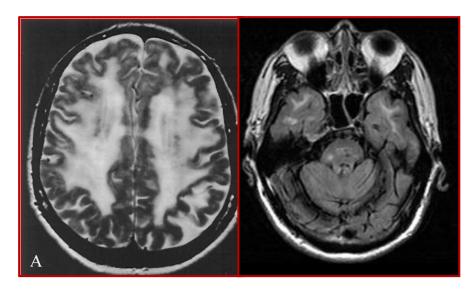
Cardiologiques

- Myxomes familiaux
- Cardiomyopathies familiales
- Arythmies familiales

Hématologiques

- Drépanocytose
- Thrombophilies

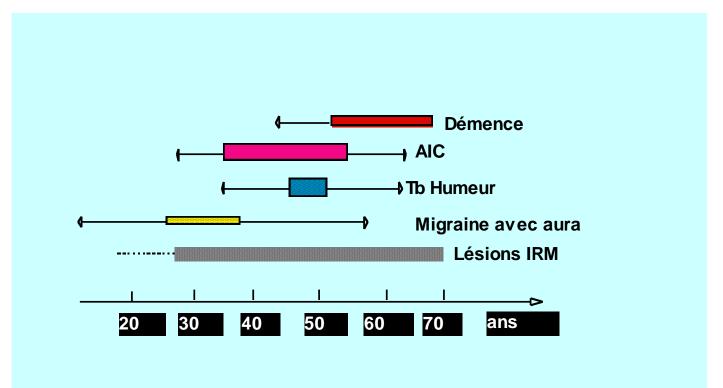


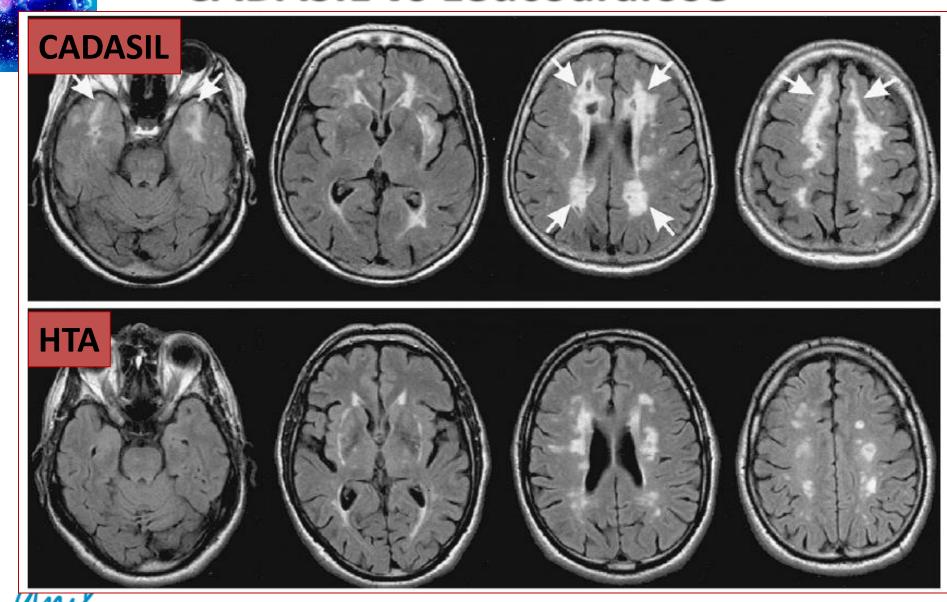

CADASIL

Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy

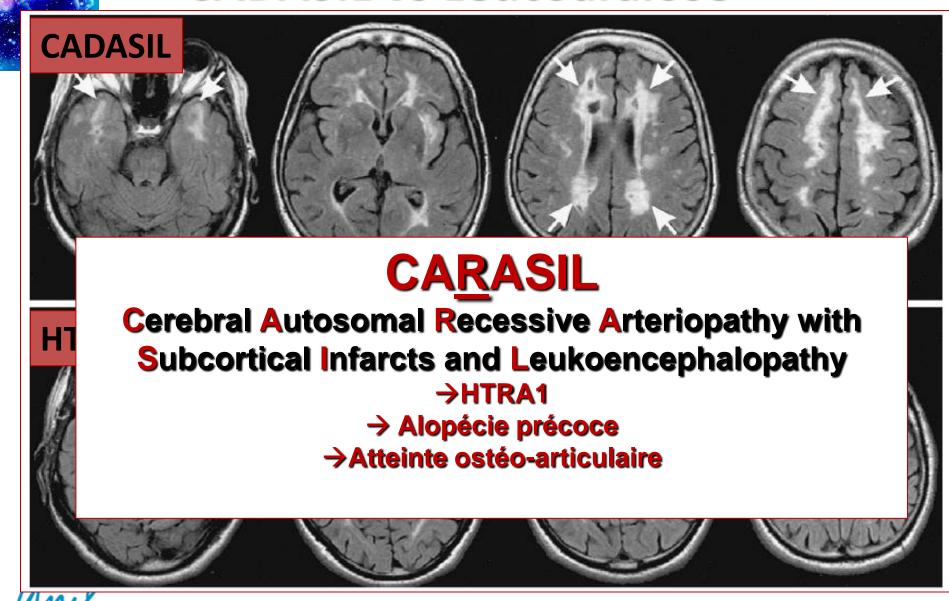
Mutation du gène NOTCH3→synthèse R transmembranaire CML →accumulation paroi vasculaire + GOM

Prévalence: 4,15/100 000 habitants




CADASIL

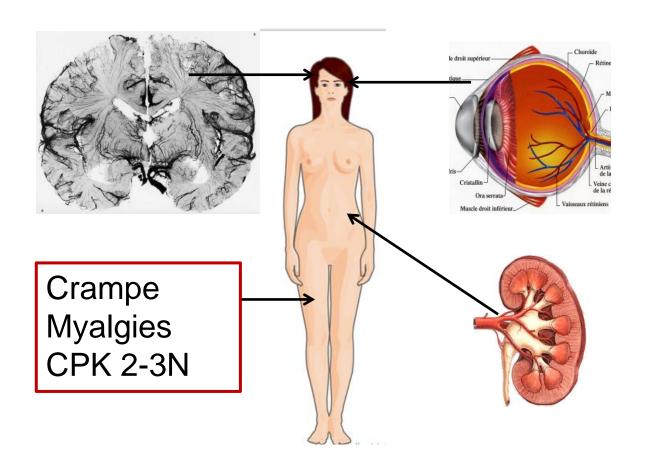
- **≻**Début 30-40 ans
- > Migraines avec aura
- >Troubles de l'humeur


- **►**Infarctus lacunaires
- > Démence vasculaire

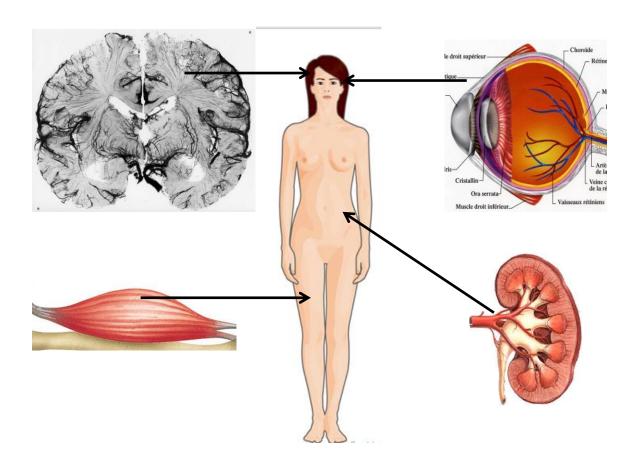
CADASIL vs Leucoaraiose

CADASIL vs Leucoaraiose

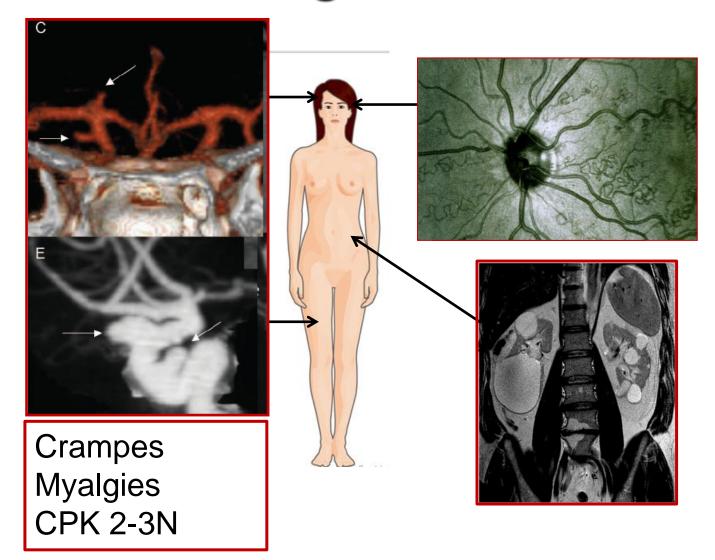
COL4A 1


- Collagen IV Collagen NC₁ CB₃ Integrin Integrin
- \triangleright Six collagènes IV: $\alpha 1$ $\alpha 6$ (A1-A6)
- Exprimée dans toutes les membranes basales
- > Autosomique dominante
- ➤ Depuis 2005 >40 mutations >100 pts
- > Formes pédiatriques&adultes
- ➤ Porencéphalie (≈ 40%)
- > AVC de l'adulte jeune (<55 ans)
- ➤ Hémorragie cérébrale (≈10%)
- ➤ Infarctus cérébral profond (≈4%)
- Maladie des petites artères

Meuwissen et al, Neurology 2011; De Vries e UNIL | Université de Lausanne Ann Neurol 2009; Sibon et al, Ann Neurol 2007



COL4A1 – signes extra neuro



COL4A1 – signes extra neuro

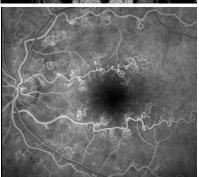
COL4A1 – signes extra neuro

Sibon et al, Ann Neurol 2009; Alamowitch et al, Neurology 2009; Coupry e t al, Arch
Oph 2010; Plaisier et al N Engl J Med 2007; Am J Hum Genet, 2012

HANAC

Hereditary Angiopathy with Nephropathy,

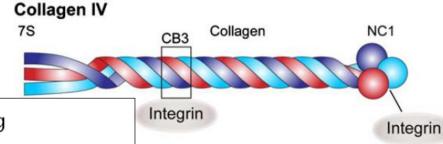
Aneurysm and Cramps


- ≽≈20% des cas
- ➤ Crampes musculaires ou Myalgies, CPK 2-3N
- ➤ Hématurie bénigne, Kystes rénaux, Insuffisance rénale
- >Tortuosités des artérioles rétiniennes
- Microangiopathie cérébrale paucisymptomatique
- >+/- Raynaud, Tbles du rythme
- ➤ Anévrysmes Intracrâniens

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

COL4A1 Mutations and Hereditary Angiopathy, Nephropathy, Aneurysms, and Muscle Cramps



COL4A2

De Novo and Inherited Mutations in COL4A2, Encoding the Type IV Collagen α2 Chain Cause Porencephaly

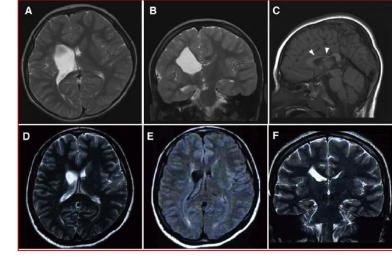
Yuriko Yoneda,¹ Kazuhiro Haginoya,^{2,3} Hiroshi Arai,⁴ Shigeo Yam COL4A2 Mutations Impair COL4A1 and COL4A2 Hiroshi Doi, 1 Noriko Miyake, 1 Kenji Yokochi, 6 Hitoshi Osaka, 7 Mi and Hirotomo Saitsu1,*

Am J Hum Genet, 2012

Secretion and Cause Hemorrhagic Stroke

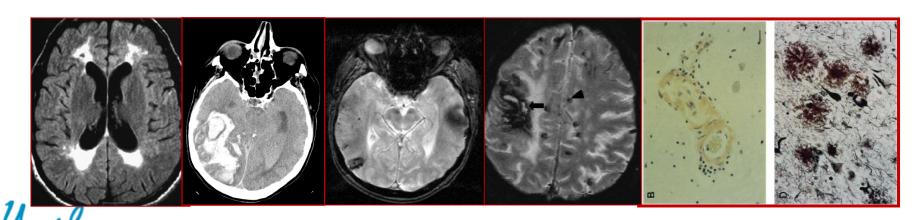
Marion Jeanne, 1 Cassandre Labelle-Dumais, 1 Jeff Jorgensen, 1 W. Berkeley Kauffman, 1 Grazia M. Mancini, 2 Jack Favor, 3 Valerie Valant, 4,5,6 Steven M. Greenberg, 4 Jonathan Rosand, 4,5,6 and Douglas B. Gould 1,*

Tableau similaire à COL4A1

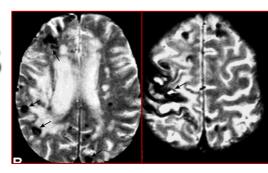

- > Porencéphalie, souffrance néonatale
- > Hémiparésie infantile
- Pénétrance variable

Modèles animaux

- Hémorragies cérébrales
- COL4A2 < *COL4A1*



Angiopathies Amyloïdes héréditaires


Dépôt de substance amyloïde dans la paroi des vaisseaux ± tissu cérébral

- **➤ Autosomique dominante, Prévalence : <1 / 1 000 000**
- > Hémorragies lobaires, infarctus, démence, HSSB, ± atteinte extra-neuro
- > Patient plus jeune- sévérité des symptômes décès précoce
- Microhémorragies prédominantes cortico-sous-cortical
- Macro-hémorragies lobaires
- Leucoencéphalopathie

Angiopathies Amyloïdes héréditaires

- > Accumulation protéine Aβ amyloîde
 - Mutation APP (Kr 21) → hémorragies lobaires (25%), MA précoce
 → type Hollandaise, italienne, Flamande, Iowa, arctique
 - Mutation Préséniline (PSEN1-2) → MA précoce < 60 ans, HIC rare
- > Autres mutations
 - Amyloïdose familiale oculoleptoméningé: mutation Transthyrétine (Kr 18) → Dépôts lepto-meningés et dans le vitrée, HSA → Démence-Epilepsie-Ataxie-Spasticité
 - Mutation Cystatine C (Kr 20), type Islandais → Dépots amyloides vaisseaux, ganglions, rate, glandes salivaires, peau → 1 ou plusieurs hématomes → démence ou décés
 - Bri, type Britannique, Gelsoline (Finlandaise), Protéine prion

 → Hémorragies cérébrales rarement au premier plan

Cavernomatoses familiales

- Forme familiale: 10-20 % des cas. Prévalence: 1-5 / 10 000
 - → plus élevé chez les Hispano-américans: 50% (effet fondateur)
- > Autosomique dominant , pénétrance incomplète
 - →3 gènes:CCM1 (7q, 40%, Protéine Krit1), CCM2 (7p, 20%, Protéine MGC4607),
 - CCM3 (3q, 40%, Protéine Pdcd10) → Non détection dans 40%
- **≻Lésions multiples** > 75% des cas
- > Atteintes extraneurologiques
 - → atteinte cutanée, rétinienne
- ➤ Corrélation avec l'âge
 - →3X plus de lésion après 50 ans, progressive

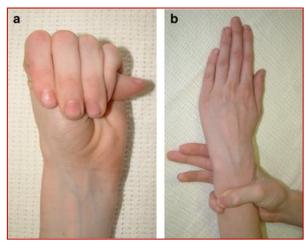
Maladie de Rendu-Osler-Weber Hereditary hemorrhagic telangiectasia

- ➤ Autosomique dominante → chromosome 9. Prévalence : 1-5 / 10 000
- Multiples télangiectasies cutanéo-muqueuses, MA\
 viscérales → épistaxis chroniques et anémiantes
- 10% atteinte neurologique
- Associés aux malformations artero-veineuses pulmonaires (PAVM)
 - AVC ischémique sur embolie paradoxal
 - Abcès, méningite bactérienne
 - Hypoxie chronique
- ➤ MAV SNC → hémorragies intracérébral et spinales

Causes genetiques de dissections

Ehlers Danlos

- Autosomique Dominante → COL3A1
- Atteinte cutanée, articulaire
- Rupture vasculaire, utérine, splénique
- Dissection, fistule, anévrysmes


Syndrome de Marfan

- AD \rightarrow Fibrilline type 1
- Manifestations cardiovasculaires, musculo-squelettiques, ophtalmo
- Anévrysme de l'aorte

Ostéogenèse imparfaite

- AD \rightarrow COL1A1, COL1A2
- Polycystic kidney disease (AD), Pseudoxanthome élastique (AR)

Causes génétiques d'AVC

Vasculopathies

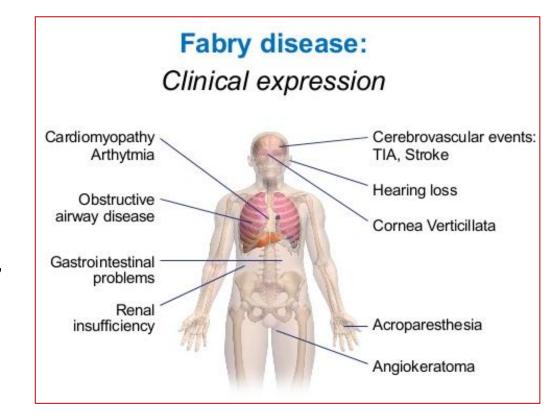
- **CADASIL**
- **CARASIL**
- ■COL4A1
- Angiopathies amyloides héréditaires
- Cavernomatoses familiales
- ■Vasculopathies cérébro-rétiniennes (HERNS)
- ■CRMCC et COATS
- PADMAL
- ■Ehlers-Danlos IV
- Marfan
- Pseudoxantome élastique
- Neurofibromatose type 1
- ■Moya-Moya familiaux

Métaboliques

- Maladie de Fabry
- Mitochondriopathies
- Hyperhomocystéinémie
- ■Dyslipidémie familiale

Cardiologiques

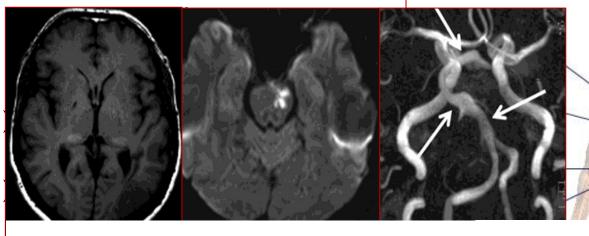
- Myxomes familiaux
- Cardiomyopathies familiales
- Arythmies familiales


Hématologiques

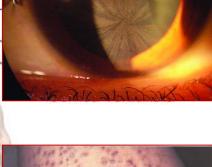
- Drépanocytose
- Thrombophilies

Maladie de Fabry Angiokeratoma corporis diffusum

- \rightarrow X-recessive \rightarrow GLA (Xq21.3-q22)
- Prévalence : 1-5 / 10 000
- ➤ Homme ≠ Femme
- ➤ ★ Activité α-galactosidaseA lysosomale
 - → accumulation Gb3
- ➢ Polyneuropathie→ Douleur
- Atteinte cardiaque, cutanée, oculaire, rénale
- > AVC ischémique



Maladie de Fabry Angiokeratoma corporis diffusum

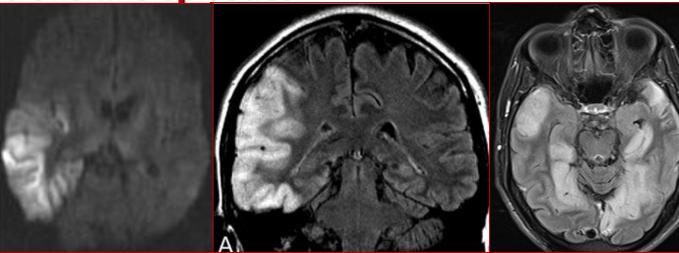

- \rightarrow X-recessive \rightarrow GLA (Xq21.3-q22)
- > Prévalence : 1-5 / 10 000
- ➤ Homme ≠ Femme
- ➤ ★ Activité α-galactosidase

Fabry disease:

Clinical expression

Mitochondriopathies

- Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like episodes
 - Mutation ADN mitochondrial →3243A>G dans le gène ARNt Leu (80%). Prévalence : 1-9 / 1 000 000
 - Stroke-like → cortical-souscortical, pariéto-temporal/occipital
 → Pas territoire artériel
 - Epilepsie, céphalées, vomissement, retard mental, tb cognitifs HSM, Tb visuel
 - Etat fébrile, effort physique peuvent déclencher
 - > Atteinte extraneuro
 - myocardiopathie, surdité, diabète, petite taille, faiblesse
 musculaire


MELAS, Tzoulis Stroke 2009

Mitochondriopathies

➤ Mitochondrial Encephalomyopathy, Lactic Acidosis and

Stroke-like episodes

he *ARNt*

occipital/

cognitifs

- ➤ MERRF → crises myocloniques
- **► Leigh sdr** → lésions tronc et noyaux gris
- ► MNGIE → tb motricité gastro-intestinale

esse

Approche diagnostique

Quand suspecter une mitochondriopathie?

- Sujet jeune, Histoire familiale (maternelle)
- > Episodes stroke-like inexpliqués, migraines, épilepsie
- ➤ Taille basse, myopathie, neuropathie, perte auditive, cardiomyopathie/défets de conduction, cataracte, diabètes, tb endocrino, calcifications globus pallidus

➤ Work-up:

- MRI, MR-spectroscopy (lactate), SPECT
- Serum-lactate et pyruvate (>ratio)
- CSF-lactate
- Biopsie musculaire → Ragged-red fibers
- Test génétique → Hétéroplasmie

Autres causes métaboliques d'AVC

- ➤ Mutation MTHFR (C677T, AR)
 - → Hyperhomocystéinémie >100 μmol/L, ↑ CV risque
- > Hypercholéstérolémies familiales

	Prévalence	Hérédité	G ène muté	Phénotype lipidique	Présentation clinique
 Hypercholestérolémies Hypercholestérolémie familiale classique (HF) Déficit familial en apoB-100 PCSK9 	1/500 1/700 1/2500	AD AD AD	Récepteur des LDL apoB-100 Proprotéine convertase subtisilin/kexin 9	↑↑↑ LDL ↑↑ LDL ↑↑ LDL	Athérosclérose précoce (MCV souvent < 60 ans), xanthomes tendineux, arc cornéen Moins sévère que HF Moins sévère que HF
Hyperlipidémie familiale combinée	1-3/100	Complexe	Nombreux variants génétiques combinés	↑ triglycérides ↑ cholestérol non-HDL	Athérosclérose précoce, tendance au diabète de type 2 et au syndrome métabolique
Hypertriglycéridémie familiale	1/600	Complexe	Nombreux variants génétiques	↑↑ TG	Xanthomes, risque de pancréatite aiguë

Autres causes métaboliques d'AVC

- Mutation MTHFR (C677T, AR)
 → Hyperhomocystéinémie >100 μmol/L, ↑ CV risque
- > Hypercholéstérolémies familiales

Causes génétiques d'AVC

Take home message

> 1- Quand suspecter

- AVC sujet jeune
- Pas de cause, AVC répétés
- FRCV << atteinte cérébrale
- Pattern radiologique

- Anamnèse → Tb cognitifs, migraine
- Histoire familiale → Tb neuro inexpliqué, HSSB (SEP..)
- Signes extraneuro (ophtalmo, dermato..)

> 3- Comment investiguer

- Bilan élargi → Atteinte systémique associée
- Consultation cérébrovasculaire et génétique

Merci de votre attention

Simplicity is the extreme degree of sophistication

Leonardo da Vinci

