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Metabolism in Drug Development
Bernard Testa

1.1

What? An lntroduction

Drug metabolism, and more generally xenobiotic metabolism, has become a

major pharmacological and pharmaceutical science with particular relevance to
biology, therapeutics, and toxicology, as abundantly explained and illustrated in
a number of recent books [1-B] and reviews 19-18]. As such, drug metabolism is

also of great importance in medicinal chemistry and clinical pharmacology
because it influences the deactivation, activation, detoxification, and toxification
of most drugs [19-22]. This broader pharmacological context will be considered
in Section 1.2. There, I shall address the "Why?" question, namely "Why does

drug metabolism deserve so much attention?"
Given the major impact of biotransformation reactions and resulting metabo-

lites on the preclinical and clinical success or failure of drug candidates, it comes

as no surprise that huge efforts are being deployed toward developing ever earlier
and faster biological tools. Here, the objective is to assess as rapidly as possible

the viability of such candidates. This brings us to the "How?" question (Section

1.3), namely "How to obtain useful data and predictions on the metabolism of
candidates?" Although an overvier,v of modern analltical technologies is provided
in Chapter 19 of this book, a first focus here will be on the many factors affecting
the fate of a drug. Having gathered many sound if narrow experimental results,

drug researchers need to make sense of them. In other words, they seek the help
of artificial intelligence to extract reliable information from experimental data

and transform it into valuable knowledge permitting extrapolative predictions to
new molecules. This, as the reader knows, is the focus of this multi-authored
book, the present chapter serwing as a bird's eye view of the field.

As much as we live in an artificial world of hardware and software, human
beings, so we believe and hope, must remain masters of the game by defining
objectives, being cognizant of limits, and interpreting as wisely as possible the
predictions generated by machines. The point made in Section 1.4 will thus be a

"\Mho?" question and conclusion, namely "lffho among scientists are best able to
assess the soundness and reliability of drug metabolism predictions?" Should
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these be software specialists, chemists, biologists, or physicians? This section will
end with a plea to pool competences and create teams whose total expertise will
be greater than the sum of individual expertise.

1.2

Why? Metabolism in Drug Development

1.2.1

The Pharmacological Context

To put the present book in a global context, it appears useful to ponder the fate

of medicines in the body and, more specifically, in the human body. The upper

part of Figure 1.1 illustrates in schematic form the two aspects of the interac-
tions between a xenobiotic and a biological system 1L5,23). Note that a "biologi-

cal system" is defined here very broadly and includes functional proteins (e.g.,

receptors), monocellular organisms and cells isolated from multicellular orga-

nisms, isoiated tissues and organs, multiceliular organisms, and even populations

of individuals, be they uni- or multicellular. As for the interactions between a

drug (or any xenobiotic) and a biological system, they may be simplified to

Act + Tox

PD effects

PK effects
A,D,E

Figure 1.1 The upper part of this scheme
illustrates the interaction between a drug (or

any xenobiotic) and the organism (or any blo
logical system). The salient point is the inter-
dependence between pharmacodynamic
processes ("what the drug does to the body,"
namely activity (Act) and toxicity (Tox))

and pharmacokinetic processes ("what

the body does to the drug," namely absorp-
tion (A), distribution (D), metabolism

(M = biotransformation), and excretion (E)).

The lower part of the scheme is meant to
make explicit the potential role of metabolites
in the PD effects of a drug. lt emphasizes that
a metabolite, once formed, will also be

involved in PK processes. More important, the
figure highlights the fact that metabolite(s)
may also play PD roles. Such roles are two,
namely pharmacological activity and/or toxic
effects (modified from Ref. [23]).
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"what the compound does to the biological system" and "what the biological sys-

tem does to the compound."
In pharmacology, one speaks of "pharmacodynamic (PD) effects" to indlcate

what a drug does to the body, and "pharmacokinetic (PI() effects" to indicate
what the body does to the drug l2a]. But one must appreciate that these two
aspects of the behavior of xenobiotics are inextricably interdependent. Absorp-
tion, distribution, and excretion (abbreviated as ADE) will obviously have a deci-
sive influence on the intensity and duration of pharmacodynamic effects,

whereas metabolisrn (meaning biotransformation) will generate metabolites that
may have distinct pharmacodynamic effects of their own. Conversely, by its own
pharmacodynamic effects, a compound may affect the state of the organism (e.9.,

hemodynamic changes and enzyme activities) and hence its capacity to handle
xenobiotics. Only a systemic approach as used in pharmacokinetic-pharmaco-
dynamic (PI(PD) modeling and in clinical pharmacology is able to grasp the
global nature of this interdependence.

W'hen looking in more detail at the behavior of a drug in the body, one finds a

number of pharmacokinetic hurdles to be overcome before the sites of action
can be reached. As schematized in Figure 1.2 for oral administration 1251, a drug

Af{inity and
in'irinsic aciivity

Passive
and

active Gl
absorption

Concentration
in relevant

compafiments

Unwanted
side effects
and toxicity

Figure 1.2 Schematic presentation of the
fate of a drug in the body following oral
administration. Metabolic processes are in

darker gray boxes. Pharmacokinetic processes

are in lighter gray boxes, and pharmaceutical

and pharmacodynamic processes are in white
ones (modified from Ref. [25]).
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must (i) be liberated from its pharmaceutical form (often a tablet), (ii) dissolve in
the gastrointestinal fluid, (iii) escape metabolism by the gut wall and flora, (1v) be

absorbed through the intestinal wall passively (via permeation) and/or actively
(via transporters), (v) escape excretion in the intestinal lumen by efflux trans-
porters (mainly phosphoglycoprotein; see Chapter 15), (vi) escape metabollsm in
the blood while being transported to the liver via the portal vein, and finally (vii)

escape metabolism in the liver before reaching the general circulation from
which it will be cleared by equiiibration in tissues, by extrahepatic metabolism,
and by excretion (mainly urinary).

The continuously increasing significance of metabolism investigations in drug
discovery and development cannot be fortuitous. This phenomenon owes much
to the therapeutic and toxicological consequences of drug metabolism (Fig-
ure 1.1), which simultaneously drive, and are driven by, the huge methodo-
logical, factual, and conceptual advances in this discipline. The necessity of
acquiring a thorough knowledge of the metabolism of developmental candidates

is illustrated below by considering successively the contribution of metabolites to
a drug's wanted activities, unwanted effects, and disposition in the body.

1.2.2

Consequences of Drug Metabolism on Activity

A drug is expected to have beneficial effects (it wouldn't be a drug otherwise)
that can be caused by the parent compound (the drug itself) and/or by one or
more metabolites. In a perspective of drug discovery, one can note that a num-
ber of metabolites of established drugs were found to have equivalent or
improved therapeutic properties compared to their parent and have become use-
ful drugs in their own right. Examples include desloratadine (from loratadine),
cetirizine (from hydroxyzine), and oxazepam (from diazepam) 121,261. Even
more significant is the discovery of paracetamol, which has replaced phenacetin,
its more toxic parent.

An important information in any drug's dossier is the activity (or lack thereof)
of its metabolites 1271. What should be realized, however, is that "activity" is

usually understood to imply the same pharmacological target as the parent mol-
ecr:Je 121,261. Hou,ever, the activity of metabolites can also resuit from interac-
tion with other pharmacodynamic targets sites not or poorly affected by the
parent drug. Here, one finds a continuum of possibilities existing from one
extreme (drugs having no active metabolite) to the other (intrinsically inactive
prodrugs), with Table 1.1 listing a few examples.

To begin at the top of Table I.1, soft drugs are defined as biologically active
compounds (i.e., drugs) characterized by a fast metabolic inactivation to non-
toxic metabolites [28,29]. As for sedative-hypnotic benzodiazepines, they fall
into two categories 121]. Some have no active metabolite, for example, the 3-
hydroxylated benzodiazepines such as lorazepam, oxazepam, and temazepam,
which undergo O-glucuronidation and cleavage reactions. Other benzodiaze-
pines such as diazepam have one or more active metabolite(s), sometimes
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Table 1 .1 Classification of drugs without or with active metabolites [2 1].

Parent drug Active metabolite(s)

Examples of drugs without active metabolites

Soft drugs

Oxazepam and other 3-hydroxylated benzodiazepines

Examples of drugs u.ith one or more active metabolite(s)
Dlazepam

Morphine
Tramadol

Examples of drugs

Cisplatin
Encainide

Tamorifen

with one or more highly active metabolite(s)

Examples of inactive rnedicinal compounds having one or

total activity
Prodrugs

Designed to have none

None known

Nordazepam

Morphine 6-O-glucuronide
O-Desmethyltramadol

Monoaqua and diaqua species

O-Desmethyl encainide and

3-methoxy- O-desmethyl encainide
4-Hydroxltamoxifen and endoxifen

more rnetabolite(s) accounting for

Designed as such

long-acting ones. Morphine and tramadol are interesting exampies of drugs hav-
ing one or more active metabolite(s). The case of cisplatin is a special one
because its monoaqua and diaqua metabolites are intrinsically much more
reactive toward DNA but have poor cellular penetration because of their high
polarity and reactivity [30].

Prodrugs represent by definition the extreme case of medicinal compounds
whose complete, or practically complete, activity is ascribable to one or more
metabolites 16,22,3I-351. Most prodrugs, in particular the carrier-linked ones,

are activated by hydrolysis. Other types of prodrugs, aiso known as bioprecur-
sors, are activated by redox reactions.

1.2.3

Adverse Consequences of Drug Metabolism

The toxicological consequences of the metabolism of drugs and other xenobiot-
ics can be favorable (i.e., cletoxffication) or unwanted (t.e., toxificatior). The risks
of toxification have now become a major issue in drug discovery and develop-
ment, where minimizing metabolic toxification is given a high priority by screen-
ing for reactive intermediates and assessing toxicity, with metabonomics and
toxicogenomics (see Chapter 16) being increasingly useful tools 121,36-481.

Table 1.2 introduces us to metaboiic toxification (often but inadequately called
bioactivation) by summarizing the main types and mechanisms of adverse drug
reactions (ADRs). On-target ADRs result from an exaggerated response caused
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Table 1 .2 Types and mechanisms of adverse drug reactions [21].

Types Mechanisms

1. On-target ADRs

2. Off-target ADRs

3. ADRs involving reactive

metabolites

4. IDRs

Predictable in principle and generally dose dependent. Based on

the pharmacolog,v of the drug and its metabolite(s), often an

exaggerated fesponse or a response in a nontarget tissue

Predictable in principle and generally dose dependent. Resulting

from the interaction of the drug or a metabolite with a nonin-

tended target

Predictable in principle and generally dose dependent. A rnajor

mechanism is covalent binding to macromolecules (adduct for-

mation), resulting in cltotoxic responses, DNA damage, or
hypersensrtir.ity and immunological reactions. A distinct (and

synergetic) mechanism is the formation of ROS) and

oxidative stress

Unpredictable, apparently dose independent, and rare (<1 case ir.r

5000). They might result frorn a combination of genetic and

external factors, but their nature is poorly understood. IDRs

include anaphylaxis, blood dyscrasi;ts, hepatotoxicify, and skin

reactions

by drug overdosing or too high levels of an active metabolite; they are predicta-

ble in principle and generally dose dependent and are labeled as type A. Off-

target ADRs result from the interaction of the drug or a metabolite with a non-
intended target such as a receptor, an ion channel, or an enzyme. They also are

predictable in principle and generally dose dependent. A highly relevant example

is that of several lipophilic drugs belonging to various pharmacological classes

that cause cardiotoxicity (QT prolongation) by blocking at therapeutic doses the

human ERG potassium channel 149,501. On-target and off-target ADRs are

direct ones and pharmacological in nature.

ADRs caused by reactlve metabolites are the ones of greatest concern in our
context [36-48]. They involve covalent binding to macromolecules and/or oxi-
dative stress after the formation of reactive oxygen species (ROSs). These ADRs

are predictable (or rationalizable) in terms of the drug's or metabolite's structure,

and they are generally dose dependent. They are often labeled as type C. Icliosyn-

cr(tic drug renctions (IDRs) (also known as type B ADRs) are rare to very rare,

unpredictable, and apparently dose independent. They are also poorly under-
stood, yet they appear to be usualiy related to reactive metabolites [51].

A global vision of early molecular mechanisms of toxification and detoxifica-

tion is offered in Figure 1.3 (modified from Ref. [23]). Many metabolites formed
by redox or hydrolytic reactions are nucleophiles, for example, phenols and alco-

hols. Such metabolites are generally innocuous per sebrt may be further metab-

olized by various oxidoreductases to more reactive electrophiles. These cover a

variety of chemical functionalities and form adducts with proteins and other bio-
macromolecules. Both nucleophiles and electrophiles can be trapped by typical
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Figure 1.3 Early molecular mechanisms of
toxifi cation and detoxifi cation. Oxidoreduc-
tases such as CYPs, peroxidases (PER), and
reductases transform xenobiotics into nucleo-
philes, electrophiles, or free radical species.

The role of quinone reductases (NQOs) as a

detoxifying enzyme is well documented 1161.

Glutathione (G5H) is particularly effective in

quenching free radicals. Nucleophiles and

electrophiles are further conjugated by UDP-

glucuronosyltransferases (UGTs), sulfotransfer

ases (SULTs), or glutathione S-transferases
(GSTs), although some conjugates have toxic
potential. Free radicals reacting with molecular

oxygen may reduce it to the superoxide anion

radical, which in turn may be detoxified by
superoxide dismutase (SOD) (modified from
Ref. 123l).

reactions of detoxification, mainly glucuronidation and sulfonation for nucleo-
philes and glutathione conjugation for electrophiles. However, toxification is not
restricted to adduct formation, and indeed Figure 1.3 mentions the formation of
free radicals and ROSs as further mechanisms.

A look at toxicophoric groups (also called toxicophores, toxophores, or toxoph-
oric groups) is particuiarly illustrative of the unity that underlies their chemical
diversity 139,46,47,52-541. Indeed, the toxic potential of many toxicophores is

explained by their metabolic toxification to eiectrophilic intermediates or to free

radicals (Figure 1.3). In more detail, the major functionalization reactions that
activate toxophoric groups include oxidation to electrophilic intermediates,
reduction to free radicals, and autooxidation with oxygen reduction, which leads

to superoxide, other ROSs, and reactive nitrogen species (RNSs). The electro-
philic intermediates and the free radicals then react with bio(macro)molecules,
producing critical or noncritical lesions. ROSs also react with unsaturated and

mainly polyunsaturated fatty acids in membranes and elsewhere, leading to lipid
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peroxidation. Of more recent awareness is the fact that some conjugation
reactions may also lead to toxic metaboiites, namely reactive acyl glucuronides

or conjugates u'ith deleterious physicochemical properties.

1.2.4

lmpact of Metabolism on Absorption, Distribution, and Excretion

A common view is that metabolizing enzymes have evolved to transform xeno-

biotics into more hydrophilic metabolites and so facilitate their effective excre-

tion mainly via the urinary and biiiary routes. Physicochemical alterations due to

metabolism are indeed documented, for example, with the marked decrease in
basicity and lipophilicity upon cltochrome P450 (CYP)- or flavin-containing
monooxygenase (FMO)-catalyzed N-oxygenation of tertiary amines 155,561 and

the marked decrease in lipophilicity caused by the sulfoxidation of suifides [57]
and by the O-glucuronidation of alcohols and phenols 1581.

The chemical and physicochemical differences between a drug and its metabo-

lites cannot remain without pharmacokinetic consequences, in particular by

affecting the distribution and excretion of the metabolites compared with the
parent drug 159,60). Intestinal absorption may also differ between drug and

metabolites when biotransformation begins in the gut lumen and walls 161]. At
the biological level, these pharmacokinetic differences may also be observed, for
example, in the penetration and storage into target and nontarget tissues [62-
65] and in the excretion by the urinary, biliary, or other routes. At the bio-
chemical level, such pharmacokinetic differences are seen in passive membrane
permeation 166,671, active influx and efflux transport [68], and binding to extrac-

eilular and intracellular macromolecules.
In a highly stimulating review article, Smith and Daivie [69] have speculated

about why metabolites circulate when one would expect their fast excretion
from the circulation. With insight, the authors separated metabolites into highly
lipid-permeable (i.e., highly lipophilic) and poorly lipid-permeable (i.e., hydro-
philic) ones. Regarding the latter, they have stressed their transporter-mediated
efflux from the liver, high plasma protein binding, and restricted distribution
into tissues. And indeed, a coupling of conjugating enzymes and efflux trans-
porters may well play a signihcant role in such a behavior (see Ref. 170] and Sec-

tion 15.1). But there is more to the story because transferase-transporter
coupling is believed to explain an efficient biliary excretion of O-glucuronides
followed by intestinal hydrolysis and enterohepatic recycling. A particularly
impressive exampie of this process was seen in postmenopausal women dosed

with estradiol 171]. Both estradiol and its metabolite estrone were extensively O-

glucuronidated and underwent enterohepatic cycling. An experimental proof of
this phenomenon was seen in the time profile of the serum concentrations of
both hormones. The time profile of estradiol showed a first phase of absorp-
tion-elimination with an approximate half-life of 2 h. This was rapidly followed
by a second absorption phase that resulted in sustained levels of estradiol for
24h and more. The serum concentration curwe of the metabolically produced
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estrone showed enterohepatic absorption phases after about 24 and 50 h, extend-
ing its half-life severalfold.

Highu lipophilic metabolites also impact on distribution and excretion, but in
an unfavorable manner. Thus, a number of conjugates are esters formed by the
acylation of endogenous hydroxy compounds with xenobiotlc acyl-CoA cofac-
tors 178,72-74]. Many of these conjugates are more lipophilic than the parent
xenobiotic carboxyiic acid, namely hybrid triglycerides, hybrid phospholipids,
and sterol esters (cholesterol esters and bile acid esters). Their formation has
been reported for a number of xenobiotic carboxylic acids using, for example,
human or animal hepatocytes or adipocl,tes. In vivo evidence is also available,

mostly in rats. A case in point is that of the widely used anti-inflammatory drug
ibuprofen [75]. Note that such metabolites may also contribute to the residues of
veterinary drugs found in animal tissues intended for human consumption [65].

1.3

How? From Experimental Results to Databases to Expert Software Packages

A number of criteria should be kept in mind when using expert computational
tools. First and as the saying goes, the models on which these tools are based can

be false, irrelevant, or at best incomplete (see Chapter 13). This may be due to
intrinsic reasons such as an assumed linearity in cause-and-effect relations. In
addition, there are extrinsic reasons as outlined below, in particular the reliability
and validity range of the experimental data on u'hich these models are them-
selves based. Thus, metabolic data are often obtained under controlled condi-
tions, which means that a number of variables are set and kept constant and
that large portions ofthe space ofpossibilities 176l are left unexplored (see Chap-
ters 8, 17, and 18).

Furthermore, quantitative results are characterized by both their accuracy and

their precision, two quality criteria regularly confused if not ignored by some

experimentalists, as regular submission reviewers can testify. This issue will not
be discussed further.

1.3.1

The Many Factors lnfluencing Drug Metabolism

A large variety of factors are known to influence drug metabolism in a quantita-
tive and even qualitative manner. What is moreJ some of these factors also inter-
fere with the effects of others, adding to their direct influence on drug
metabolism an indirect and nonlinear component.

Table 1.3 presents a conventional classification dividing these factors into
inter-individual and intra-individual ones 177 831. Such a table, although self-
explanatory and useful, is a static one that fails to inform on the dynamics of the
many actions and interactions influencing the drug metabolism response. To
this end, we turn to Figure 1.4, a highly simplified and schematic representation
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Table 1.3 A classification of factors affecting drug metabolism [77,78].

lnter-individual factors lntra-individual factors

Definition: Remain constant in a

given organism

Cause'. "Encoded" in the genome

Consequences'. Variations due to:

. species differences

. gender differences

. genetic polymorphisms

DeJinition: Vary over the lifetime of an organism

Cause: Originate in physiological, pathological, and

external influences

Consequences: Variations due to:

. age; biological rh1'thms; pregnancl'; tissue

characteristics, etc.

. diseases; stress, etc.

. nutrition; er.rzyme inhibition or induction by

xenobiotics; drug-drug interactions, etc.

of such interactions. Our exploration of Figure 1.4 begins with the genome and

the inter-individwal factors it encodes. Gene expression is here the pivotal pro-

cess, connecting genes as information carriers and gene products as actors.

These gene products are of two types, namely (i) functional Proteins as agents of

Physiological and
Pathological Factors

Figure 1.4 Schematic view of factors influ-
encing pharmacodynamic and pharmaco-

kinetic drug responses. Genes remain

unaffected in their sequences, which account

for differences seen between species, between

genders, and in polymorphic populations
(inter-individual differences). !n contrast to this
relative simplicity, the biochemical mecha-

nisms underlying intra-individual differences
are markedly more complex.

Gene Products
(Phenotypes)

> Enzymes
> Transporters
> lon channels
> Receptors
> lmmune system

Pharmacokinelic
and

Pharmacodynamic
Responses
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Table 1.4 Classification of biological systems used in drug metabolism investigations [15].

Types of biosystems Examples

Subcellular systems

Cellular and tissue

systens

1l7 yiyo systems

Purified or expressed enzyrnes; organelles; hornogenate fractions
(e.g., 59, microsomes); blood serum ar-rd plasma

Primary cell cultures (e.g., hepatocltes); tumor cell lines
(e.g., Caco-2 cells); tissue slices; isolated perfused organs

Multicellular organisms; batches of experimental animals; groups of
indir.iduals; collectives of patients; populations

pharmacodynamic and pharmacokinetic responses and (ii) regulatory gene prod-
ucts as activators or inhibitors of gene expression.

Intra-individual factots occupy the upper-right and lower-right corners of the
figure. To some extent, they can act directly on functional proteins, specifically
enzyme inhibition by drugs and other xenobiotics. But most effects of physiolog-
icai, pathological, and external factors occur through an influence on gene

expression via regulatory gene products. In this context, epigenetic mechLnisms

have become an exciting and seemingly unlimited field of research [84,85].

1.3.2

Acquiring and lnterpreting Experimental Results

A schematic summary of biological systems used in drug metabolism studies is

shou,n in Table 1.4 and goes from the simpler to more complex biosystems

[15,86 89]. Although the latter are generally able to yield a large amount of bio-
logical information, they are also major consumers of resources and time. Large-

scale studies using, for example, clinical or ethnic populdtions are useful mainly
if genetic polymorphisms or intra-individuai factors are the object of study. The
results of such studies are seldom if ever used as a source of information in the
development of predictive databases and algorithms. In contrast, investigations
based on a modest number of human volunteers are (or should be) necessary to
demonstrate the relevance of preclinical studies, namely (i) in vitro results
obtained with subcellular and cellular systems and (ii) in vivo results obtained
from batches of experimental animals, often highly inbred ones.

At the other end of the biocomplexity spectrum we find subcellular systems

(Table 1.4), which are discussed in detail in Chapters B, 17, and 18. Some such

media are comparatively simple to obtain but will only be useful in bio-
transformation studies if a very limited range of metabolic reactions are under
examination (e.g., hydrolyses in the case of human blood plasma). As with purif-
ied or expressed enzymes, they require rather sophisticated techniques for their
production but will yield highly valuable knowledge and can be used in high-
throughput assays. The same is true for the most popular biosystems in in vitro
drug metabolism studies, namely tissue homogenates, fractions thereof (e.g., 59),

and isolated organelles. However, there is a poorly investigated problem here,
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namely the potential biophysical perturbations experienced by enzymes trans-
ferred from a highly crowded intraceiluiar environment [90] to a dilute medium.

The above issue brings ts to cellular biosystems 19I,92) (discussed in more
detail in Chapters 8, 17, and 18). In our scheme, their complexity is intermediate
between that of subcellular and in vivo systems (Table 1.4), although in another
context cells have been aptly compared to a "bottomless pit of complexity" [93].
Cellular biosystems generally possess a broad variety of drug-metabolizing activ-
ities and are rich if obviously incomplete models of in vivo systems. Similar to
cell homogenates, they can be secured from eukaryotic organisms differing in
some inter-individual or intra-individual factor, yielding what is best delined as

ex vivo systems. From data gathered in an extensive meta-analysis of the litera-
ture [9], it was found that about l0o/o o{ investigations were performed using
cellular or tissue systems. This appears as a modest percentage given the effi-
ciency and versatility of these systems.

The point I want to make in this subsection is the necessity for deveiopers of
predictive expert tools to check the reliability and validity range of the experi-
mental data fed into their database. To this end, distinct quality criteria need to
be defined for qualitative and quantitative data. Also, the influence of inter- and
intra-individual factors should be taken into account and when possible used to
segregate metabolic data. This analysis and annotation of data is clearly a major
task but a necessary one to improve the predictive capacity of expert soffware.

1.3.3

Expert Software Tools and Their Domains of Applicability

In which domains of drug metabolism is a given predictive software package
designed to be useful? This certainly is the initial question to be asked when
planning to use such software packages. Table 1.5 presents a classification of
predictive tools and a personal view of their capabilities.

In a simplilied manner, one can distinguish between tr,vo types of methods to
predict drug and xenobiotic metabolism, namely specific ("local") tools and com-
prehensive ("global") ones [15,94-7011. Specffic tools apply to simple biological
systems (e.g., single enzymes) and/or to single metabolic reactions, and they may
or may not be restricted to rather narrow chemical series of analogs. Such meth-
ods include quantitative structure-metabolism relationships (QSMRs) based on
structural and physicochemical properties 159,1.021. Quantum mechanical calcu-
lations (see Chapters 7 and 11) may also shed light on structure-metabolism
relationships (SMRs) and generate parameters to be used as independent varia-
bles in QSMRs [103], revealing, for example, correlations between rates of meta-
bolic oxidation and energy barrier in H-atom abstraction [104]. Three-
dimensionai QSMR (3D-QSMR) methods yield a partiai view of the binding/cat-
alytic site of a given enzyme as derived from the 3D molecular fields of a series
of substrates or inhibitors (the training set; see Chapters 9 and 13). In other
words, they yield a "photographic negative" of such sites and will allow a quanti-
tative prediction for novel compounds structurally related to the training set.
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Table 1.5 Specific ("local") and comprehensive ("global") ln slllco predictive tools [15].

Methods Examples of applications

Specific ("local") in silico tools, applicable to (i) series of analogs or structurally heterogeneous

cr:mpounds and (ii) a sir-rgle metabolic reaction

QSMRs (e.g., linear, multilinear, multivariate); . Prediction of affinities, rates of
3D-QSMRs (e.g., CoMFA, Catalyst, GRID/ metabolisrn

GOLPE) . Inhibitory potency

Quantum rnechanical (MO) rnethods
(a b initio, semi-empirical)

Molecular modeling and docking

Expert packages combining docking, MO, and

3D-QSMRs (e.g., MetaSite)

Comprehensive ("global") in silico tooIs, applicable to (i) series of structurally heterogeneous

compounds and (ii) versatile biological systems

Meta-packages combining (i) docking, 3D- . Nature of first-generation metabolltes,

QSMRs, MO and (ii) a number of reactions ',vith an index of probability or likellhood
(e.g., MetaDrug) . Flagging of reactive or adduct-forming

Databases (Metabolite, Biotransformations)

metabolites
. Enzyme induction and inhibition
. Nature of first-generation metabolites,

u,ith an index of probability or likelihood
. Flagging of reactive or adduct-forming

metabolites
. Nature of first-generation metabolites,

r.i'ith an index of probability or likelihood
. Flagging of reactive or adduct-fonning

metabolites

Molecular modeling of xenobiotic-metabolizing enzymes, combined with
in silico docking (see Chapter 10), affords another approach to rationaiize
and predict drug-enzyme interactions [105]. Its application to drug metabo-

lism was made possible by the crystallization and X-ray structural determina-
tion of CYPs, first bacterial and now human ones. Although such
pharmacophoric models cannot yet give highly accurate quantitative affinity
predictions, they nevertheless afford fairly reliable answers as to the relative

accessibility of target sites in the substrate molecules. The 3D models of a

large number of mammalian and mostly human CYPs are now available, as

well as some other xenobiotic-metabolizing enzymes (see Chapter 5).

The last specific tools mentioned in Table 1.5 are expert tools combining sev-

eral methods, for example, pharmacophore models (obtained by three-dimen-
sional quantitative structure-activity relationship (3D-QSAR) modeling), protein
models (obtained by molecular modeling), and docking [106-108]. Other power-

fu1 combinations are (i) 3D models obtained by molecular modeling and (ii)
sophisticated QSMR approaches based on multivariate analyses of parameters

obtained from molecular interaction fields (MIFs), as found in the MetaSite

. Regioselectivity of the reaction

. Mechanism of the reaction

. Relatir.e rates of metabolisn

. Ligand behavior

. RegioselccliriD olllte reaction

. Regioselectir i0 ol the react ion

Expert software and their databases

(lvIETEoR, META, MetabolExpert)
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algorithm [94,109,110]. MetaSite is a specific package in the sense that it is cur-
rently restricted to the major human cltochromes P450. At the end of the proce-

dure, the atoms of the substrate are ranked according to thelr accessibility and

reactivity. In other words, MetaSite takes the 3D stereoelectronic structure of
both the enzyme and the ligand into account to prioritize the potential target

sites in the molecule (see Chapter 9).

Comprehensive erltert software packages are in principle applicable to versatile

biological systems (i.e., to any enzyme and reaction) and to any chemical com-
pound 115,981. As shown in the second part of Table 1.5, this is the ultimate
goal of meta-packages combining docking, 3D-QSMR, and molecular orbital
(MO) methods, not for a single enzyme but for the largest possible majority of
them. The inclusion of other functional proteins such as transporters can also be

envisaged. Combining several specific models to form a meta-model is a most

appealing (if ambitious) strategy, and much work remains to be done before

such approaches can be seen as genuinely comprehensive. MetaDrug appears as

a promising step in this direction [111,112]. As reviewed by Hawkins [113], one

approach to global prediction of metabolism is to use databases in the form of
either knowledge-based software or predictive, rule-based one. These databases

can be searched to retrieve information on the known metabolism of com-
pounds with similar structures or containing specific moieties. Predictive, knowl-
edge-based packages attempt to portray the metabolites of a compound based on

knowledge rules, defining the most likely products [113]. Existing software pack-

ages of this type are, for example, MetabolExpert, META, and METEOR, which
are discussed in Chapter 12.

1.3.4

Roads to Progress

Given the wide range of methods available today (Table 1.5), which significant
advances in predictive drug metabolism can medicinal chemists hope for in a

reasonable future? A number of items are proposed here:

1) Numerous enzyme superfamilies and families play a role in drug metabo-
lism [2], but the relative involvement of these enzymes, in both quantita-
tive and qualitative terms, remains a matter of debate [23]. When listening
to some medicinal chemists, one may get the feeling that drug metabolism

begins and ends with CYPs and that the word "metabolism" implicitly
implies "by cytochrome P450." A recent meta-analysis does indeed confirm
the primary role of CYP-catalyzed reactions, but it also demonstrates the
marked role of non-CYP enzymes (i.e., other oxidoreductases, hydrolases,

transferases). Thus, almost 600/o o{ first-generation metabolites are indeed
produced by CYPs, but the contribution of this superfamily strongly
decreases in the second (ca. 30%) and mainly third and higher generations
(ca.20%). This relative decrease is compensated by an increased involve-
ment of transferases and some non-CYP oxidoreductases [9]. More
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attention should be given in predictive packages, and especially in specific

(local) toois, to some major enzyme (super)families such as dehydrogen-

ases, flavin-containing monooxygenases, peroxidases, hydrolases, UDP-glu-
curonosyltransferases, sulfotransferases, and glutathione S-transferases.

The recognition of toxophoric groups appears as an indispensable asset of
expert predictive tools 121]. Much experimental evidence has been gath-

ered [53], and useful computational models are available [1f4-116]. How-
ever, there is much room for improvement in flagging reactive metabolites

or metabolic intermediates.
Existing tools are quite competent in suggesting first-generation metabo-

lites. These, of course, will remain hypothetical ("unconfirmed positives")

until proven present by experiment ("confirmed positives"). Strictly speak-

ing, "faise positives" do not exist because a possibility, however minute,
always remains for improved analytical tools to detect them. The real

problem lies with "false negatives," namely unpredicted yet later confirmed
metabolites. These result from gaps in our knowledge or in a package's

database; in the latter case, such gaps, after being identified, can help

developers improve their product. In my view, a quality index based on

false negatives should be a main criterion to assess expert predictive tools.

Most predictive packages classify their predicted metabolites according to
an index of probability or liJ<elihood [117]. It seems that most misclassifica-

tions result from missing information or inadequate weighing of probabili-
ties among metabolites.
Following improvements in items 3 and 4 above, there is a serious need to

develop automatic prediction of second- and later generation metabolites,

being aware that the probability of misleading predictions would grow
exponentially and prohibitively with the number of generations considered.

Assuming item 5 above to be reasonably accounted for, a versatile predic-

tive package should be able to organize the most probable metabolites into
a realistic metabolic tree. As an aside, I am worried to note how many

good experimental papers in drug metabolism summarize their findings
with an aberrant metabolic treel
In metabolic predictions, molecular factors are usually taken into account in a

satisfactory, if incomplete, manner [99] (Figure 1.5). However, and to the best of
my knowledge, no current tool is able to take species and other biological fac-

tors credibly into account [10f]. One can only hope that in several years or a

fen decades, enough experimental evidence will have been published to a1low

polymorphisms and a few intra-individual factors to be taken into account.

1.4

Who? Human lntelligence as a Conclusion

Having taken a bird's eye view of experimental biosystems and predictive
software packages, let us now conclude by dedicating some words to the

2)

3)

4)

5)

6)
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FG = Functional Groups
MR = Metabolic Reactions

P = Probabilities of occurrence

Figure 1.5 Summary of factors influencing
the metabolism of drugs and other xenobiot-
ics. Both proximal (i.e., functional groups) and
global (i.e., molecular) properties are partly
taken into account in predictive software. ln

contrast, the many biological factors (see

Table 1.3) are poorly considered, if at all,

mainly because of a paucity of usable experi-
mental data (modified from Ref. [101]).

central actor in drug metabolism studies and predictions, namely the human
expert [118].

Experimental drug metabolism is obviously a multidisciplinary science because

it draws on chemistry (physical, organic-synthetic, analytical, medicinal, etc.),
biology (biochemistry, enzymology, genetic, epigenetics, etc.), and pharmacologt
(molecular, clinical, pharmacokinetic, toxicology, therapeutics, etc.). Add to this
list the computatiowtl components (software development, MO computations,

QSMRs, 3D-QSMRs, structure-property reiationships, drug design, homology
modeling, molecular modeling and docking, etc.), and you end up with drug
metabolism prediction as a research front drawing on an impressively broad
range of disciplines.

Companies engaged in creating and developing predictive software pacl(ages

rely on published results to feed their databases and extract SMRs. This, how-
ever, is no trivial task because it necessitates competence in biochemistry, phar-
macology, and analltical chemistry. As for medicinal chemists, their major role
is in unveiling SMRs to extract additional information from metabolic data and
improve the quality of predictions. Programmers create, develop, and upgrade
predictive software packages, while experts in drug metabolism must define and
apply quality criteria to monitor progress. Such upgrading must be a continuous
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Figure 1,6 The spiral of progress in the creation, development, and updating of software
packages for drug metabolism prediction (modified from Ref. 11181).

one in terms of both algorithms and databases content, being based in particular
on a constant influx of new data and so generating a spiral of progress as
sketched in Figure 1,6.

Similar thoughts apply to pharmaceutical companies large and small
engaged in drug discovery and development. Some drug discovery groups
will use predictive software like they were black boxes, while others will care-
fully assess and critically interpret their output. Here also a broad range of
competence is called for, primarily in organic chemistry, biochemistry, enzy-
mology, and pharmacology.

What the above says is simply that a comparable pool of competence is
needed to create predictive software or to use them in drug discovery and devel-
opment. It may even be that the more ambitious the project, the broader and
more varied the necessary team of specialists. Not to mention the challenge of
team leaders to understand and coordinate the work of their colleagues. Human
intelligence is indeed served by artificial intelligence, but it must remain in
charge. This is u'hat the present book is about.
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