15TH EUROPEAN BURNS ASSOCIATION CONGRESS August 28th – 31th, 2013 • Vienna, Austria

HIGH-DOSE ASCORBIC ACID AND FLUID RESUSCITATION REQUIREMENTS IN MASSIVE BURN INJURY – A REAL IMPACT?

P. Stoecklin, Y.A. Que, P. Voirol, H. Engel, M.M. Berger

Service de Médecine Intensive Adulte et Centre des Brûlés CHUV - Lausanne

- Some studies suggest that early administration of high-dose ascorbic acid (AA: 66 mg/kg/h in 24hrs) may decrease fluid requirements during resuscitation in major burns via an antioxidant mechanism, reducing capillary leak and resultant tissue edema, with better oxygenation.(Reference: Tanaka H, et al « Reduction of resuscitation fluid volumes in severely burned patients using ascorbic acid administration: a randomized, prospective study » Arch Surg. 2000 ; 135(3): 326-331.)
- Despite promising preliminary results no large study is yet available.

- Design: Retrospective quality control study of the impact of Ascorbic Acid (AA) vs. none (NO) during the first 48h of 16 patients with massive burns. Unicentric.
- Data: Prospective collected data (MetaVision ®) in the reference burn center ICU (CHUV; Lausanne, Switzerland). Ventilation, oxygenation data and lactate at 12, 24, 36 and 48 hrs

Patients: Inclusion criteria: admission within 6 hrs, survival \geq 48h.

- 8 massive burns resuscitated guided by the new protocol with AA
- 8 patients paired historical control matched for TBSA, inhalation, age
 Ventilator settings were by ICU protocol.
 Statistics: Wilcoxon tests, 2-way ANOVA

Fluid resuscitation

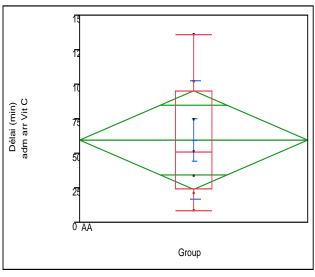
until 2010:

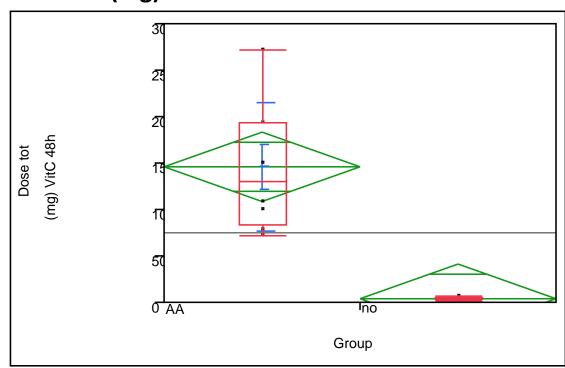
Parkland guided (4ml/kg/TBSA%) in all burns

2011: recommendation to use the "lower" Parkland range for all patients (2ml/kg/TBSA%) with the addition of AA 66 mg/kg/h in patients with burns >50% TBSA.

Results (Data as medians)

Variable	Ascorbic Acid	NO
Ν	8	8
Age (years)	37.5	30.5 (ns)
Sex ratio (M/F)	7/1	6/2
Weight (Kg)	78.5	73.6
TBSA (%)	71	70
Surgical TBSA (%)	65	62.5
Inhalation injury (n)	6	6
SAPS II	44	35
Length mech vent (d)	26	27
Length ICU (days)	50	78
Outcome (Live/D)	5/3	6 / 2 (p=0.12)




Result

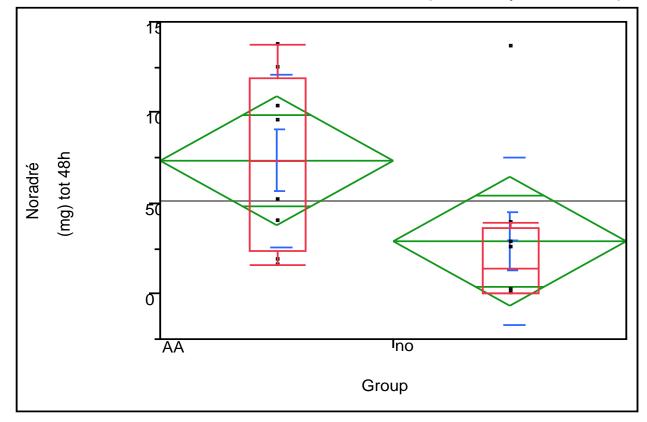
(median 509min)

1 orange = 51 mg AA ... 150 g $\rightarrow \approx 2800$ oranges

Fluid resuscitation volume

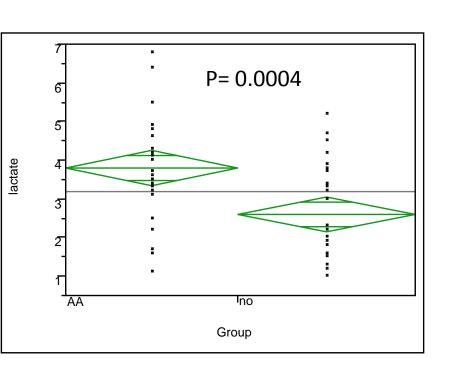
p= 0.0264

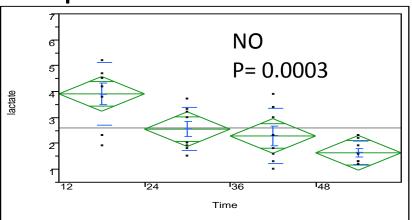
p= 0.0318

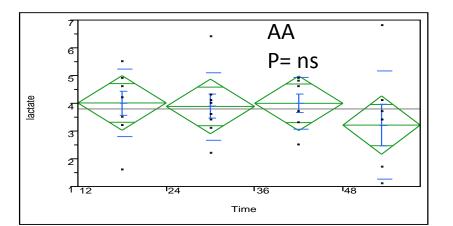

Results (Data as medians)

Variable	Ascorbic Acid	NO
Urine output (ml/kg/h)	1.0	1.9 (p=0.062)
Norephinephrine (mg) tot 48h	73.6	13.9
Lactate (mmol/l)	3.7	2.3

Norephinephrine cumulated doses over first 48 hrs (Trend: p= 0.0792)







Result

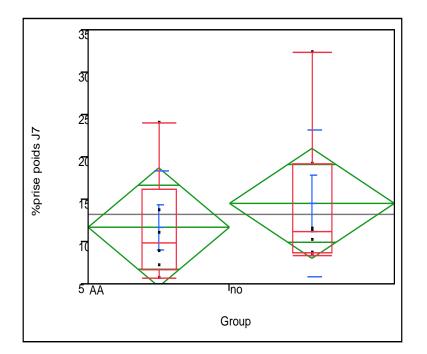
Oxygenation: First 48hrs' PaO₂/FiO₂ ratios –n.s impact

Weight change - % from admission

Maximum (day 2)

NS: +27% AA vs +23% NO

Veu spiod esited %


Day 7

Ns: + 11.7% AA vs + 14.5% NO

HO

Na⁺ O

OH

Sodium ascorbate provides 131 mg of sodium per 1 g of ascorbic acid

CONCLUSIONS:

- High dose AA was associated with a significant reduction of fluid requirements.
- There was no significant impact on weight gain
- AA was not associated with major organ failure
- Higher lactate levels are a concern though: cause uncertain.
- Indeed 2 major changes in resuscitation protocol were introduced simultaneously – the fluid restriction may also have been the cause
- Larger studies are warranted to determine the efficiency of the treatment.

Results (Data as medians)

Variable	Ascorbic Acid	ΝΟ
Delay administration AA (min)	509	-
Total of Vit.C at 48h (mg)	129'228	3′572
Fluid input 0-24h (L)	19	21.8
Fluid input 25-48h (L)	8.2	15.9
24h fluid input ml/kg/bsa	3.2	4.3
48h fluid input ml/kg/bsa	5.0	6.1
Norephinephrine (mg) tot	73.6	13.9
48h		
Urinary output (ml/kg/h)	1.0	1.9 (p=0.062)
Lactate (mmol/l)	3.7	2.3