Current CT imaging in obstructive lung disease

Catherine Beigelman-Aubry Igor Letovanec

CHUV Lausanne

COPD

Chronic airflow limitation

Parenchymal destruction

Emphysema

Small airway disease

Obstructive bronchiolitis

Variable relative contribution

Having the ability to phenotype patients may affect clinical management

> Stewart et al. Curr Opin Pulm Med 2013 Mar; 19(2):109 Mets et al. Eur Radiol (2012) 22:120

MORPHOLOGICAL ASPECTS

Emphysema Phenotype

Airway Disease Phenotype

May be related to differences in physiopathoogy and genomic profile

Mixed pattern

Emphysema Phenotypes at CT

Morphologic Types

Ability to distinguish between various subtypes

Centro-lobular emphysema Paraseptal emphysema Panlobular emphysema Bullous emphysema

Centro-lobular emphysema

Most common type of emphysema Begins near the center of the secondary pulmonary lobule Relative sparing of the periphery of the pulmonary lobule

Respiratory bronchioles primarily affected

Pipavath et al. J Thorac Imaging 1009; 24, 171

Small and well-marginated round lucencies
 No visible wall
 Central dot
 Central dot
 Centrilobular core and artery Definite recognition

Severe centrilobular emphysema

Confluent Loose their round shape

Paraseptal emphysema

Distal acinar or paraseptal

Predominant involvement of the distal alveoli and their ducts and sacs Sparing of the respiratory bronchioles

Pipavath et al. J Thorac Imaging 1009; 24, 171

Well-marginated hypodensities Distinct hairline walls corresponding to septa Subpleural, along fissures and bronchovascular bundles

Upper lung predominance

Bullous emphysema

Centrilobular or paraseptal emphysema may develop into bullae > 1 cm diameter < 1 mm wall thickness

+/- compression of the pulmonary parenchyma

Panlobular emphysema

Uniform loss of alveolar septa throughout the primary and secondary lobules, including - respiratory bronchioles - alveolar ducts - alveolar sacs

PLE may coexist with other forms of emphysematous lesions in polymorphous emphysema

Pipavath et al. J Thorac Imaging 1009; 24, 171

Poumon normal

Emphysème pan acinaire

Differential diagnosis and pitfalls

Polymorphous emphysema in a heavy smoker Various types difficult to individualize

Associated Langerhans cell granulomatosis

Alpha 1-antitrypsin deficiency

Heterogenous without lower lobe predominance

Fairly uniform and diffuse decrease in attenuation Loss of vessel caliber predominating in lower lobes

Appearance of featureless decreased attenuation

Panlobular emphysema

Constrictive bronchiolitis

Panlobular emphysema

Constrictive bronchiolitis

The pulmonary vascular distorsion helps to differentiate PLE from severe and diffuse constrictive bronchiolitis

Sjögren syndrom and relapsing polychondritis

Angioarchitecture

Volume intensity projection

Airway Disease Phenotypes at CT

Small airway disease

Progression of COPD from GOLD stages 0 to 4 Strongly associated with small airway wall thickening Result of lung repair or remodeling

Mosaic perfusion and air trapping Indirect findings

Large Airway Disease in COPD

Inflammation and remodeling

Bronchial Wall Thickening

Diameter ratio of inner and outer lumen < 0.8

Bronchiectasis

Elevated prevalence in patients with moderate to severe COPD Moderate cylindrical bronchiectasis (29-58%) Lower lobes

Associated with

Severe airflow obstruction
Isolation of PPM from sputum
At least one hospital admission for exacerbations in the previous year

O'Brien. Thorax; 2000; 55: 635 Irem. AJRCCM ; 2004; 170: 400 Martinez-Garcia. Chest; 2011; 140: 1130

Bronchial Wall and Lumen Irregularities

Bronchial Diverticulas

Small air collections in the wall of the main and lobar bronchi

Fusion of multiple depressions and dilatations of bronchial gland ducts

/IinP

Sverzellati. Eur Radiol. 2010; 20: 88

Bronchial Diverticulas

Air-filled outpouchings Accordion-like or comb-wide teeth appearance

Tracheobronchomalacia

Frequent cartilage deficiency in COPD patients Prominent collapse of airway lumen occuring at forced expiratory maneuver

Decrease of the axial tracheal lumen area > 70% on dynamic expiratory CT

Dynamic Expiratory Tracheal Collapse in COPD

 Risk factor
 Observed in 20/100 patients
 Magnitude of collapse independent of disease severity
 No correlation with physiologic parameters PFTs
 6-min walk test
 St. George's Respiratory Questionnaire

Incidental identification of excessive expiratory tracheal collapse in a general COPD population not necessarily clinically significant

Boisselle et al. Chest 2012; 142(6):1539

Bronchomalacia

INSPIRATION

Changes in bronchial section areas between inspiration and expiration strongly correlated with FEV1

Matsuoka. Radiology. 2008; 248: 1042

Saber Sheath Trachea

Acquired deformity related to the abnormal pattern and magnitude of intrathoracic pressure changes in COPD

CT QUANTITATIVE ANALYSIS FOR PHENOTYPING COPD

Quantitative analysis of Emphysema Lung Densitometry

Quantitative analysis of Small Airway Obstruction Expiratory Air Trapping

Quantitative Analysis of Airway Wall Remodeling Bronchial Wall Thickness

Quantitative CT assessment of emphysema

Visual subjective grading

Has yielded good correlation between CT and pathological measures of extent of emphysema

Objective CT densitometric analysis More accurate and suitable for follow-up

Burgel et al. Eur Respir Rev 2011; 20: 119, 7

Quantitative CT assessment of emphysema

Validated by CT - pathological correlations

Density mask technique

Percentage of the total lung volume that contains voxels with attenuation values below a predefined threshold

Combines density measurements with visual assessment

Percentile method

Madani et al. Radiology 2006;238:1036

Quantification of emphysema at a regional level % for each lobe

GE

60sn

Completeness of fissures

Quantification of Small-Airway Obstruction

Use of CT exam to quantify the reduction in the number of airways < 2.0-2.5 mm in luminal diameter measured by the Disector counting method

Reduction in the number of the terminal bronchioles in lungs with CLE and PLE emphysema

Narrowing and loss of small airways occurs prior to emphysematous destruction

McDonough. NEJM; 2011; 365: 1567

Extent of Air Trapping

Several techniques: parametric response map....

Change in relative lung volume with attenuation values from -850 HU to -950 HU between paired inspiratory and expiratory examinations

Close correlation with results of PFTs

 Reflect the severity of airway dysfunction whatever the severity of emphysema

> Mets. Eur Radiol; 2012; 22: 120 Matsuoka. J Comput Assist Tomogr; 2007; 31: 384 Matsuoka. AJR; 2008; 190: 762

Bronchial Wall Thickening at CT in COPD

BWT related to FEV1 in cigarette smokers

BWT is a strongest determinant of FEV1 in COPD as is extent of emphysema

BWT and total lung emphysema percentage associated with COPD exacerbation frequency

Berger. Radiology; 2005; 235: 1055 Aziz. AJR 2005; 185:1509 Nakano. AJRCCM; 2000;162:1108 Han. Radiology; 2011; 261: 274

Bronchial cross-section quantification

Fetita. IEEE Trans Med Imaging; 2004; 23: 1353 Brillet. Eur Radiol; 2007; 17: 1483

Bronchial cross-section quantification

In order to assess the heterogeneity of the disease, several airway segments can be selected for analysis

Cross-section MPR images are generated on each selected airway at desired sampling interval along the central axis

Segmentation of the airway lumen and wall performed on each refrmat image

ASSOCIATED FINDINGS

Respiratory Bronchiolitis

Small centrilobular nodules without tree in bud appearance

Poorly defined 3-5 mm of diameter > 3 mm of the pleura

Ground glass attenuation

Homogeneous distribution

Exclusive or predominant upper lobe location

Syndrome of combined pulmonary fibrosis and emphysema

Heavy smokers Severe dyspnea TLCO low Preserved pulmonary volumes

Focal abnormalities

↗ level of confidence by virtual endoscopic imaging

Leads to proceed a fiberoptic bronchoscopy and a guided biopsy

Detection of small primary tumours

0.8 mn

OTHER CAUSES

Constrictive bronchiolitis

Clinical and imaging findings may be similar regardless of the cause

Infection sequelae Adenovirus, respiratory syncitial virus, Mycoplasma pneumoniae, measles, whooping cough Lung, heart-lung, and bone marrow transplantation sequelae Chronic rejection or graft versus host disease Rheumatoid arthritis Drug toxicity (penicillamine) Exposure to toxic fumes Neuroendocrine cell hyperplasia

Irreversible circumferential submucosal fibrosis

Mosaic perfusion pattern

Inhomogeneous lung attenuation resulting from regional differences in lung perfusion

Airways disease

Pulmonary vascular disease

Areas of decreased lung opacity of varying sizes May correspond to lobules, segments, lobes or entire lung

On expiration, the contrast in attenuation between normal and abnormal areas increases

22 No 22 Nov, **Contrast resolution increased with mIP** MDD/MIMD

Expiration?

Homogenous decreased lung attenuation and perfusion

No increase in lung attenuation nor significant change in lung volume Good quality of expiratory maneuver according to collapse of airrway lumen

Combined Sjögren's disease and relapsing polychondritis

Infection sequelae

Expiration Low dose

Inspiration N Dose

Post-viral bronchiolitis

Subtle mosaic perfusion pattern Bronchial wall thickening Tubular dilatation > 90 %

Frequently asymptomatic despite the severity of the lesions

Swyer James syndrome

FOV 1 SW

FOV 3

22 Jan, 2010 14

FOV 32

SW (

INDER

FOY SV

Bone marrow transplantation

Post transplant

Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia: an under recognised spectrum of disease

Susan J Davies, John R Gosney, David M Hansell, Athol U Wells, Roland M du Bois, Margaret M Burke, Mary N Sheppard, Andrew G Nicholson

Collections of scattered single cells, small nodules or linear proliferations of neuroendocrine cells confined to the airway mucosa

> Davis SJ. Thorax 2007; 62-248 Falkenstren-Ge J Cancer Res Clin Oncol 2011: 137: 1495

20 PA

Obstructive Sd

Precursor

lesion of pulmonary

carcinoid tumors

MDCT provides additional data to that derived from traditional measures of lung function in COPD patients

Phenotypic abnormalities may be recognized on visual and quantitative evaluation of CT images in patients with COPD

Better stratification of patients with COPD in clinical trials, and for a given patient this may help optimize treatment

Other causes of obstructive lung disease