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From radiology to precision medicine Challenges Conclusions
We can leverage large imaging datasets and computing power 

to improve healthcare: hospitals are sitting on a goldmine. 

Methods are getting better very rapidly: semi- and fully-
automated tools will empower radiologists.

Integrating imaging with -omics will lead to vastly improved 
understanding of disease: radiology is central to precision medicine.



Context and introduction



Medical and imaging data are growing

inspired by [IDC/EMC, 2014]
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Notable open data projects
NIH clinical center - chest CTs

30K+ subjects, 100K+ images

Medical ImageNet
1000 chest CTs, 831 bone tumor CTs,

4K mammograms, 4K hand CTs

UK Biobank
Goal: 100K subjects with sMRI, rsfMRI, dwMRI, neuropsy, 
genotype, vitals etc. 

Child Mind Institute Healthy brain network
Goal: 10K subjects with sMRI (T1, T2, qT1, qT2), rsfMRI, EEG, 
neuropsy, genotype, vitals etc. 
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1609 CT/MRI 
annotated lesions

31M images 
from 38K 
subjects



Computing power is constantly growing

Price is also going down constantly
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#1 Sunway TaihuLight, 93 PF
#3 Piz Daint, 19.6 PF

…
Radeon Vega (iMac Pro) 11 TF

PS4 1.8 TF
Intel Core i9 1 TF

http://top500.org


medical imaging

Predictive radiology

radiology machine 
learning

predictive radiology

= data + algorithms + computing power + interpretability



Applications of predictive radiology
Diagnosis

CAD: abnormality detection, lesion segmentation etc

direct Dx

direct DDx

subtyping

Prognosis

clinical score change

high-risk/low-risk stratification (care / trial enrichment)

Treatment planning

responder/non-responder



Methods and tools
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Machine learning pipeline (fMRI)
acquire 
signal

pre-process 
signal

extract 
features

select
features

train
classifier
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The linear support vector machine (SVM)
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sum -  w tells you how to 

add / subtract features 
(voxels) to get y from x.



The convolutional neural network (CNN)

[L
eC

un
 e

t 
al

., 
IS

C
A

S, 
20

10
]

uses learned image ‘filters’ ‘pooling’ reduces dimension

[Krizhevsky et al, NIPS 2012]

CNN: a non-linear method 
which learns its own 

features, needs “a lot” of 
data and can work very well



Clinical applications



CAD for dementia: volumetry
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MorphoBox algorithm: [Schmitter et al, NeuroImage Clinical 2014]



CAD for cerebrovascular disorders: microbleed detection
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Data: SWI
Classifier: 3DCNN
Subjects: 194 controls + 126 stroke (1149 CMBs)
Performance: sens 92%, 3 FP/subject (state of the art)

truth detected



Automated multivariate dementia diagnosis
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Features: modulated GM
Classifier: linSVM
Subjects: 20+14 HC, 20+14 AD
Performance: sens 97%, spec 94%



Automated MR diagnosis in general

[Arbabshirani et al., NeuroImage 2017]



Schizophrenia treatment response prediction
[S

ze
sz

ko
  e

t 
al

., 
Sc

hi
z. 

Bu
ll, 

20
12

]

Features: cortical thickness (GE 1.5T, SPGR)
Subjects: 39 SZ (25R/14 NR @ 16 wks) + 45 HC 
Treatment: antipsychotics (olanzapine /risperidone)

Responders have 
thicker OCx 



From radiology to precision medicine



Radiology data is only part of the picture
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[Dendrou et al., Nat. Rev. Neurol. 2016]



Imaging genomics for stratification

[Rudie et al.,, Neuron, 2012]

MET genotype: lower FA in TCx PCx OCx



Imaging genomics for gene discovery

[Richiardi, Altmann et al., Science, 2015]

Problem finding genes for diseases using 
traditional techniques requires 1000s of subjects

Solution use brain imaging as intermediate 
phenotype
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Topic mapping and interpretation of radiology images

Imaging data: 216K 3D slices (1/4 MR, 3/4 CT)
Text data: 780K radiology reports
Performance:

image → topic (60): 66% (top-1), 95% (top-5)
image → disease (77): 71% (top-1), 88% (top-5)

[Shin et al., JMLR, 2016]

example topic:  “MRI of brain tumor” automated image interpretation

output

input



Challenges



Challenges
IT infrastructure 

Move computation to data - how to standardise (SPHN)

Annotated data still small

Especially ICD-10 subcategories

How to use multi-site data ?

Most theory is built for IID data

How to decide between sensitivity and specificity?

Cost of false positive / false negatives differs widely across 
diseases
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Conclusions
We can leverage large imaging datasets and computing power 

to improve healthcare: hospitals are sitting on a goldmine. 

Methods are getting better very rapidly: semi- and fully-
automated tools will empower radiologists.

Integrating imaging with -omics will lead to vastly improved 
understanding of disease: radiology is central to precision medicine.
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LEVERAGING 3D TEXTURE INFORMATION IN PET 
AND CT IMAGES FOR PRECISION MEDICINE WITH 

THE QUANTIMAGE PLATFORM
A. Depeursinge, Y. Dicente, R. Schaer, J. Castelli, J. O. Prior

2. Upload batch of 
PET-CT images

3. Get results

radiomics.hevs.ch

1. Set-up the
parameters

QuantImage: An Online Tool for High-
Throughput 3D RadiomicsFeature 

Extraction in PET-CT

YashinDicenteCid

to appear in:
Biomedical Texture Analysis: Fundamentals,Applications andTools
Editors:Adrien Depeursinge, Omar S. Al-Kadiand J. Ross Mitchel
Elsevier-MICCAI book series, 2017.

Collaborators:J. Castelli, R. Schaer, N. Scher, A. Pomoni, J. Prior, and A. Depeursinge

https://radiomics.hevs.ch
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OUTLINE

• Background - Radiomics 

• Personalized tumor phenotyping in PET - CT 

• Methods 

• Image mining: intensity versus texture 

• Texture analysis: definition and qualitative review 

• The QuantImage platform 

• Results 

• Head and Neck cancer: importance of geometry 

• Lung cancer: importance of aggregation 

• Conclusions and perspectives
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PERSONALIZED TUMOR PHENOTYPING

• Personalized medicine aims at enhancing the patient’s  
quality of life and prognosis 

• Tailored treatment and medical decisions based  
on the molecular composition of diseased tissue 

• Current limitations [Gerlinger2012] 

• Molecular analysis of tissue composition  
is invasive (biopsy), slow and costly 

• Cannot capture molecular heterogeneity
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tion through loss of SETD2 methyltransferase func-
tion driven by three distinct, regionally separated 
mutations on a background of ubiquitous loss of 
the other SETD2 allele on chromosome 3p.

Convergent evolution was observed for the 
X-chromosome–encoded histone H3K4 demeth-
ylase KDM5C, harboring disruptive mutations in 
R1 through R3, R5, and R8 through R9 (missense 

and frameshift deletion) and a splice-site mutation 
in the metastases (Fig. 2B and 2C).

mTOR Functional Intratumor Heterogeneity
The mammalian target of rapamycin (mTOR) ki-
nase carried a kinase-domain missense mutation 
(L2431P) in all primary tumor regions except R4. 
All tumor regions harboring mTOR (L2431P) had 
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tion through loss of SETD2 methyltransferase func-
tion driven by three distinct, regionally separated 
mutations on a background of ubiquitous loss of 
the other SETD2 allele on chromosome 3p.

Convergent evolution was observed for the 
X-chromosome–encoded histone H3K4 demeth-
ylase KDM5C, harboring disruptive mutations in 
R1 through R3, R5, and R8 through R9 (missense 

and frameshift deletion) and a splice-site mutation 
in the metastases (Fig. 2B and 2C).

mTOR Functional Intratumor Heterogeneity
The mammalian target of rapamycin (mTOR) ki-
nase carried a kinase-domain missense mutation 
(L2431P) in all primary tumor regions except R4. 
All tumor regions harboring mTOR (L2431P) had 
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tion through loss of SETD2 methyltransferase func-
tion driven by three distinct, regionally separated 
mutations on a background of ubiquitous loss of 
the other SETD2 allele on chromosome 3p.

Convergent evolution was observed for the 
X-chromosome–encoded histone H3K4 demeth-
ylase KDM5C, harboring disruptive mutations in 
R1 through R3, R5, and R8 through R9 (missense 

and frameshift deletion) and a splice-site mutation 
in the metastases (Fig. 2B and 2C).

mTOR Functional Intratumor Heterogeneity
The mammalian target of rapamycin (mTOR) ki-
nase carried a kinase-domain missense mutation 
(L2431P) in all primary tumor regions except R4. 
All tumor regions harboring mTOR (L2431P) had 
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• Huge potential for computerized medical image analysis 

• Explore tumor heterogeneity in existing diagnostic images 

• Cancer ecosystem is composed of micro-habitats [Gatenby2013] 

• Relates to cancer subtype, patient survival, response to treatment  

• The density, metabolism, and structure of tumor tissue observed 
in PET and CT images reflects their nature [Leijenaar2015] 

• E.g., active cancer cells, angiogenesis, necrosis [Aerts2014] 

• PET and CT axial views of non-small cell lung cancer:

PERSONALIZED TUMOR PHENOTYPING
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Materials and Methods
Patients and PET imaging. This study comprised 35 non-small cell lung cancer (NSCLC) patients 
who were prospectively included in a clinical trial (NCT00522639) and scheduled for radiotherapy and/
or chemotherapy between July and December 200811. 18F-FDG-PET/CT imaging was performed on a 
Biograph 40 PET/CT scanner (Siemens Medical Solutions) twice: (1) after induction chemotherapy but 
before radiotherapy and (2) during the second week of radiotherapy (Fig.  2a,b). Patients fasted for at 
least six hours before imaging. The injected amount of 18F-FDG was (4 ×  body weight [kg] + 20) MBq. 
Patients rested 60 minutes before image acquisition. Patients’ blood glucose levels were below 10 mmol/L, 
so no correction for blood glucose level was applied.

PET images were iteratively reconstructed using normalization- and attenuation-weighted OSEM 
using 4 iterations, 8 subsets and a 5 mm Gaussian filter. The resulting images had an in-plane pixel size 
of 4 ×  4 mm and a 3 mm slice thickness. PET images were converted into units SUV, normalized by 
patient body weight9. Tumor volumes of interest (VOIs) were manually delineated on fused PET/CT 
images for treatment planning purposes. Further details are described elsewhere11. This study was con-
ducted according to national laws and guidelines and approved by the appropriate local trial committee 
at Maastricht University Medical Center (MUMC+ ), Maastricht, The Netherlands. All included patients 
signed an informed consent form.

Image processing and feature extraction. SUVs within the VOI were first discretized using: (1) a 
fixed bin size (B), or intensity resolution, in units of SUV (Fig. 2c) and (2) a fixed number of bins (D), 
or discrete resampling values (Fig.  2d). For image I, let I(x) represent the SUV of voxel x, SUVmin the 
minimum SUV in I and SUVmax the maximum SUV in I. Resampling SUVs into bins with an intensity 
resolution of B was performed using:
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Figure 2. Left column: Representative images of sequential imaging for one patient, showing pre-treatment 
imaging (a) and imaging during the second week of radiotherapy (b). The tumor delineation is outlined 
in green. Both images are displayed with the same window/level settings. Right column: Histograms of the 
pre-treatment and during treatment images, resampled with a fixed bin size (i.e. intensity resolution) (c) or 
a predefined number of bins (d). In (d), one can appreciate the difference in resulting intensity resolution 
when resampling with a fixed number of bins. Pre-treatment and during treatment intensity resolutions were 
0.6 and 0.37 [SUV], respectively
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• Radiomics: image-based personalized phenotyping [Kumar2012] 

• Use image analysis to predict disease outcome 

• Surrogate slow, costly and invasive molecular analysis 

• Quantitative feature extraction 

• Intensity, shape, margin, texture 

• Statistical and predictive models 

• Uni- and multi- variate

PERSONALIZED TUMOR PHENOTYPING
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imaging (a) and imaging during the second week of radiotherapy (b). The tumor delineation is outlined 
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pre-treatment and during treatment images, resampled with a fixed bin size (i.e. intensity resolution) (c) or 
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• Radiomics [Kumar2012]: image-based personalized tumor phenotyping 

• Surrogate / complement slow, costly and invasive molecular analysis 

• Use computerized 3D image analysis to predict disease outcome 

BACKGROUND – RADIOMICS
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• Radiomics: image-based personalized phenotyping [Kumar2012] 

• Use image analysis to predict disease outcome 

• Surrogate slow, costly and invasive molecular analysis 

• Related work [Ganeshan2013, Ravanelli2013, Mattonen2014, Depeursinge2015, … ] 

x  No separate analysis of nodule components: mixing micro-habitats 

x  Limited geometric specificity of current texture biomarkers

PERSONALIZED TUMOR PHENOTYPING
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• Radiomics [Kumar2012]: image-based personalized tumor phenotyping 

• Surrogate / complement slow, costly and invasive molecular analysis 

• Use computerized 3D image analysis to predict disease outcome 

BACKGROUND – RADIOMICS
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OUTLINE

• Background - Radiomics 

• Personalized tumor phenotyping in PET - CT 

• Methods 

• Image mining: intensity versus texture 

• Texture analysis: definition and qualitative review 

• The QuantImage platform 

• Results 

• Head and Neck cancer: importance of geometry 

• Lung cancer: importance of aggregation 

• Conclusions and perspectives
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INTENSITY VERSUS TEXTURE

8

• Intensity features are based on statistics of voxel values 

• Standardized Uptake Values (SUV) in PET 

• Features: 

• mean 

• variance 

• skewness 

• kurtosis 
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NOTATIONS, SAMPLING AND IMAGE FUNCTIONS

8

• 3-D image functions in space 

• Continuous: 

• Discrete: 

• Sampling: increments in                  corresponds to physical displacements in       as 

• 3-D discrete image         (i.e, PET) and tumor region 
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INTENSITY VERSUS TEXTURE
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• Intensity features are based on statistics of voxel values 

• Specific to PET [Orlhac2014]: 

•   

•    

•          is a spherical region of 1.2cm diameter centered at the position of 

• Metabolic tumor volume (MTV): 

•                                             is the volume of one voxel in cm3 

• Total lesion glycolysis (TLG): 
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• 3-D image functions in space 

• Continuous: 

• Discrete: 

• Sampling: increments in                  corresponds to physical displacements in       as 

• 3-D discrete image         (i.e, PET) and tumor region 

x1
x2

k2
k1

)
�x1�x2

·
f(x) f(k)

f(k), k =

0

@
k1
k2
k3

1

A 2 Z3

(k1, k2, k3) R3

0

@
x1

x2

x3

1

A =

0

@
�x1 · k1
�x2 · k2
�x3 · k3

1

A �x3

x3 k3R3 Z3

f(x), x =

0

@
x1

x2

x3

1

A 2 R3, f(x)
F�! f̂(!) =

Z

R3

f(x)e�jh!,xidx, ! 2 R3

I(k) : ZI1⇥I2⇥I3

I(k)

I1

I2

I3

M

M

volvoxel = �x1�x2�x3

TLG = SUVmean ⇥MTV



INTENSITY VERSUS TEXTURE

10

• Intensity features are insensitive to tissue morphology 

•       and       have identical intensity distributions 

• Terms such as tumor “heterogeneity” [Kidd2008]  
are ambiguous in the context of imaging

IA IB
IA IB



OUTLINE

• Background - Radiomics 

• Personalized tumor phenotyping in PET - CT 

• Methods 

• Image mining: intensity versus texture 

• Texture analysis: definition and qualitative review 

• The QuantImage platform 

• Results 

• Head and Neck cancer: importance of geometry 

• Lung cancer: importance of aggregation 

• Conclusions and perspectives
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• Texture characterizes transitions between voxel values 

• direction
IA IB
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• Texture characterizes transitions between voxel values 

• scale
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TEXTURE OPERATORS [DEPEURSINGE2017]

14

• Texture characterizes transitions between voxel values 

• A    -dimensional texture analysis approach is characterized by a set of  
     local operators quantifying transitions at the position 
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Figure 1.12: 2D texture functions f1 and f2 (synthetic tumors) are analyzed with a
collection of convolutional circularly symmetric texture operators {G1,G2,G3} with
functions {g1, g2, g3}. The latter are 2D Laplacians of Gaussians (LoG, see Section ??
of Chapter 3) at di↵erent scales and have di↵erent spatial supports G1,n ⇥G2,n. The
resulting response maps h fi

n are revealing distinct properties of both the core and the
margin of the tumors. In particular, h f2

1 (x) highlights the core texture of f2. This
is verified when averaging the response maps5 over the core region Mcore to obtain
scalar measurements ⌘n, where ⌘ f1

1 < ⌘
f2
1 . Likewise, h f2

1 (x) highlights the margin of the
tumor in f2, where ⌘ f1

1 < ⌘
f2
1 . The texture scales captured by g2 and g3 are too large

and do not discriminate well between f1 and f2, neither for the core nor for the margin
of the tumors.

5The average of the absolute values of hfi
n (x) is computed since LoGs are band-pass functions in the

Fourier domain and have zero mean.
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Figure 1.11: At a fixed position x0, texture functions f (x) are analyzed by local tex-
ture operators Gn with spatial supports Gn = G1,n ⇥ · · · ⇥GD,n, where Gn ⇢ RD. When
applied to all positions x0 2 RD, Gn yields response maps hn(x0) = Gn{ f }(x0), which
can be aggregated over a ROI M ⇢ RD to obtain a scalar-valued texture feature ⌘n.

age gradients along x1, co-occurrences, local binary patterns or circular frequencies).
Examples of response maps are shown in Figures 1.12 and 1.13. The properties of
popular texture operators are discussed and compared in Chapter 3. In the particular
case of linear operators, the application of the operator Gn to the image function f (x)
at a given position is a scalar product between f (x) and a function gn(x) with support
Gn (see Eq. 3.2 of Chapter 3). Applying a linear operator Gn to the input texture func-
tion f (x) by sliding the spatial support of its function over all positions x0 is called
convolution (see Eq. 3.1 of Chapter 3). Convolutional texture operators are discussed
in Section 2 of Chapter 3.

In order to extract collections of scalar measurements ⌘ = (⌘1, . . . , ⌘N) from N re-
sponse maps hn(x), an aggregation function is required to gather and summarize the
operators’ responses over a defined ROI domain M ⇢ RD (see Fig. 1.11). The values
of the vector ⌘ define coordinates of a texture instance in the feature space RN . In-
tegrative aggregation functions are commonly used to extract estimations of features
statistics (e.g., counts, means, covariances). For instance, the mean can estimate the
average responses of a given operator over M as
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1
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where |M| =
R

M dx is the area4 covered by M. Aggregation functions are not limited
to integral operations. For example, max

x2M

⇣
hn(x)

⌘
is an aggregation function used in

deep CNNs for the max-pooling of feature maps (see Section 2.4.1 of Chapter 4). It is

4or volume, hypervolume when D > 2.
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Figure 1.11: At a fixed position x0, texture functions f (x) are analyzed by local tex-
ture operators Gn with spatial supports Gn = G1,n ⇥ · · · ⇥GD,n, where Gn ⇢ RD. When
applied to all positions x0 2 RD, Gn yields response maps hn(x0) = Gn{ f }(x0), which
can be aggregated over a ROI M ⇢ RD to obtain a scalar-valued texture feature ⌘n.

age gradients along x1, co-occurrences, local binary patterns or circular frequencies).
Examples of response maps are shown in Figures 1.12 and 1.13. The properties of
popular texture operators are discussed and compared in Chapter 3. In the particular
case of linear operators, the application of the operator Gn to the image function f (x)
at a given position is a scalar product between f (x) and a function gn(x) with support
Gn (see Eq. 3.4 of Chapter 3). Applying a linear operator Gn to the input texture func-
tion f (x) by sliding the spatial support of its function over all positions x0 is called
convolution (see Eq. 3.3 of Chapter 3). Convolutional texture operators are discussed
in Section 5 of Chapter 3.

In order to extract collections of scalar measurements ⌘ = (⌘1, . . . , ⌘N) from N re-
sponse maps hn(x), an aggregation function is required to gather and summarize the
operators’ responses over a defined ROI domain M ⇢ RD (see Fig. 1.11). The values
of the vector ⌘ define coordinates of a texture instance in the feature space RN . In-
tegrative aggregation functions are commonly used to extract estimations of features
statistics (e.g., counts, means, covariances). For instance, the mean can estimate the
average responses of a given operator over M as
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malizing the operators’ outputs over the instances. Rotation–
covariant LBPs are obtained by using “uniform” circular pixels
sequences that are rotation–invariant [39]. Rotation–covariant
SIFT (i.e., RIFT [31]) measures HOG orientations relatively
to the local dominant gradient orientation. However, the ex-
traction of both uniform sequences and HOG are exhaustive
and do not specifically model discriminative patterns. They
also require arbitrary choices of the radius of the circular
neighborhoods. Rotation covariance using steerable filters has
also been proposed [8, 12]. In previous work, we locally
aligned the first template of steerable Riesz wavelets to obtain
rotation–covariant texture features [8]. Such a template models
N th–order directional derivatives and has a strong angular
selectivity. A limitation of this approach is that this template
does not model the local organization of the directions as it
only seeks the one prevailing.

Several researchers proposed to learn filters from data, aim-
ing at modeling local organizations of scales and directions [9,
17, 40, 44, 46, 48, 54], but few of them are coupled with a
rotation–covariant framework. In this work, we propose iter-
ative rotation–covariant texture learning using steerable Riesz
wavelets as an effective way of exploiting local organizations
of scales and directions of visual patterns. In a first step,
optimally discriminative texture signatures (i.e., in the sense of
structural risk minimization [59]) are built from the data. N th
order Riesz filterbanks constitute texture dictionaries, from
which the richness and angular selectivity is controlled by
the order N of the transform. Optimal linear combinations
of the multiscale Riesz templates are obtained using support
vector machines (SVM) for a given one–versus–all (OVA)
classification task, which does not make assumptions on scales
and directions. Class–wise texture signatures are obtained,
allowing for visual assessment of the learned texture patterns.
In a second step, the orientations of the learned signatures
are locally oriented to maximize their response, which can be
obtained analytically as a linear combination of the initial co-
efficients. Starting from the coefficients of the locally oriented
signatures, the whole procedure is repeated iteratively until
convergence of the texture signatures.

II. MATERIAL AND METHODS

Our approach for iterative rotation–covariant texture learn-
ing using steerable Riesz wavelets is described in this section.
The Riesz transform and associated filterbanks are explained
in Section II-B. The iterative texture learning framework and
the validation scheme used to evaluate it are described in
Sections II-C–II-D and II-F–II-G respectively.

A. Notations
A generic d–dimensional signal f indexed by the

continuous–domain space variable x = (x1, . . . , xd) 2 Rd

is considered. The d–dimensional Fourier transform of f is
noted as:
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Fig. 1. Templates corresponding to the Riesz kernels convolved with a
Gaussian smoother for N=1,2,3.

B. Steerable Riesz filterbanks
The Riesz transform is a multidimensional extension of the

Hilbert transform, which maps any function f(x) to its har-
monic conjugate and is a very powerful tool for mathematical
manipulations of periodic signals [52]. For a 2–D signal f(x),
the N +1 components of the N th–order Riesz transform RN

are defined as:

RN {f} (x) =
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with n = 0, 1, . . . , N . A singular kernel R(n,N�n) {f} (x) is
defined in the Fourier domain as:
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with !1,2 corresponding to the frequencies along the two im-
age axes x1,2. The multiplication with j!1,2 in the numerator
corresponds to partial derivatives of f and the division by
the norm of ! in the denominator makes that only phase
information is retained. Therefore, RN yields allpass1 filter-
banks with directional (singular) kernels R(n,N�n) [56]. The
Riesz transform commutes with translation, scaling or rota-
tion. The orientation of the Riesz components is determined
by the partial derivatives in Eq. (2). The first–order Riesz
transform corresponds to a phase–only gradient. The higher–
order versions as specified in (2) are obtained by regrouping
the 2N Riesz filters into N +1 components by commutativity
of convolution (e.g., @2/@x@y is equivalent to @2/@y@x). The
Riesz kernels R(n,N�n) convolved with Gaussian kernels for
N=1,2,3 are depicted in Fig. 1.

The Riesz filterbanks are steerable [15, 56], which means
that the local response of each component R(n,N�n) of an
image f(x) rotated by an arbitrary angle ✓ can be derived

1Except for the DC component.
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• Global / local, invariances / equivariance of the texture 
operators to geometric transformations can be desirable 

• E.g., translation, rotation and scaling 

INVARIANCE OF TEXTURE OPERATORS [DEPEURSINGE2017]
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Fig. 10. (a) A digitized histopathology image of Grade 4 CaP and different graph-based representations of tissue architecture via Delaunay Triangulation, Voronoi
Diagram, and Minimum Spanning tree.

Fig. 11. Digitized histological image at successively higher scales (magnifica-
tions) yields incrementally more discriminatory information in order to detect
suspicious regions.

or resolution. For instance at low or coarse scales color or tex-
ture cues are commonly used and at medium scales architec-
tural arrangement of individual histological structures (glands
and nuclei) start to become resolvable. It is only at higher res-
olutions that morphology of specific histological structures can
be discerned.

In [93], [94], a multiresolution approach has been used for the
classification of high-resolution whole-slide histopathology im-
ages. The proposed multiresolution approach mimics the eval-
uation of a pathologist such that image analysis starts from the
lowest resolution, which corresponds to the lower magnification
levels in a microscope and uses the higher resolution represen-
tations for the regions requiring more detailed information for
a classification decision. To achieve this, images were decom-
posed into multiresolution representations using the Gaussian
pyramid approach [95]. This is followed by color space con-
version and feature construction followed by feature extraction
and feature selection at each resolution level. Once the classifier
is confident enough at a particular resolution level, the system
assigns a classification label (e.g., stroma-rich, stroma-poor or
undifferentiated, poorly differentiating, differentiating) to the
image tile. The resulting classification map from all image tiles
forms the final classification map. The classification of a whole-
slide image is achieved by dividing into smaller image tiles and
processing each image tile independently in parallel on a cluster
of computer nodes.

As an example, refer to Fig. 11, showing a hierarchical
cascaded scheme for detecting suspicious areas on digitized
prostate histopathology slides as presented in [96].

Fig. 12 shows the results of a hierarchical classifier for detec-
tion of prostate cancer from digitized histopathology. Fig. 12(a)

Fig. 12. Results from the hierarchical machine learning classifier. (a) Original
image with the tumor region (ground truth) in black contour, (b) results at scale
1, (c) results at scale 2, and (d) results at scale 3. Note that only areas determined
as suspicious at lower scales are considered for further analysis at higher scales.

shows the original image with tumor outlined in black. The next
three columns show the classifier results at increasing analysis
scales. Pixels classified as “nontumor” at a lower magnification
(scale) are discarded at the subsequent higher scale, reducing
the number of pixels needed for analysis at higher scales. Ad-
ditionally, the presence of more discriminating information at
higher scales allows the classifier to better distinguish between
tumor and nontumor pixels.

At lower resolutions of histological imagery, textural analysis
is commonly used to capture tissue architecture, i.e., the overall
pattern of glands, stroma and organ organization. For each digi-
tized histological image several hundred corresponding feature
scenes can be generated. Texture feature values are assigned
to every pixel in the corresponding image. 3-D statistical, gra-
dient, and Gabor filters can be extracted in order to analyze
the scale, orientation, and anisotropic information of the re-
gion of interest. Filter operators are applied in order to extract
features within local neighborhoods centered at every spatial
location. At medium resolution, architectural arrangement of
nuclei within each cancer grade can be described via several
graph-based algorithms. At higher resolutions, nuclei and the
margin and boundary appearance of ductal and glandular struc-
tures have proved to be of discriminatory importance. Many of
these features are summarized in Tables I and II.

D. Feature Selection, Dimensionality Reduction,
and Manifold Learning

1) Feature Selection: While humans have innate abilities to
process and understand imagery, they do not tend to excel at

Figure 1.16: Typical geometric transformations of textures encountered in photo-
graphic imagery [38] (left) versus biomedical images [25] (right). In most cases,
biomedical textures are observed in images with known pixel sizes. As a consequence,
texture measures that are robust to translations and rotations (rigid transformations)
but sensitive to changes in image scale will yield optimal descriptors. As opposed to
photographic image analysis, it is not desirable to enforce any form of scale invariance
which truly entails the risk of regrouping patterns of di↵erent nature.
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Figure 1.8 Top: various textures and their corresponding primitives or textons. Bottom: impor-
tance of the spatial organization (e.g., density, local geometric transformations, occlusions) of
the primitives.

(a) (b)
Figure 1.9 An example of preattentive discrimination [15]. (a) texture composed of two regions:
left X-shaped textons are preattentively (i.e., effortlessly) distinguishable against L-shaped tex-
tons, while in the right the T -shaped textons needs focused attention (i.e., using long-term mem-
ory). (b) texture composed of line segments where the difference in orientations segregates
preattentively the middle region from the outer region.

tance to e�ciently design BTA approaches and in particular texture operators, which
is further discussed and detailed in Section 3 as well as in Chapters 2 and 3.

2.5. Biomedical image modalities
When compared to the broad research field of computer vision, analyzing texture in
biomedical images can rely on highly specific properties of the latter. In particular,
most biomedical imaging modalities rely on controlled acquisition protocols allow-

Figure 1.17: The requirements in terms of geometric invariance/equivariance of image
analysis methods substantially di↵er depending on the image analysis task at hand.
Left: detecting cars in photographic imagery7 versus right: detecting collagen junc-
tions in lung CT [18].

7https://www.youtube.com/watch?v=xVwsr9p3irA, as of March 7 2017.

3.3.3. Non-geometric invariances
Similarly to the general categories of feature design mentioned in Section 3.1, de-
signing texture operators that are invariant or equivariant to certain geometric trans-
formations can be considered as handcrafted because it involves prior knowledge of
biomedical texture variants. However, more subtle intra-class variations are caused
by the diversity of e.g., biology, anatomy, subject age [19]. In this context, texture
operators can be trained using machine learning to respond invariantly to subtle intra-
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Figure 1.9 An example of preattentive discrimination [15]. (a) texture composed of two regions:
left X-shaped textons are preattentively (i.e., effortlessly) distinguishable against L-shaped tex-
tons, while in the right the T -shaped textons needs focused attention (i.e., using long-term mem-
ory). (b) texture composed of line segments where the difference in orientations segregates
preattentively the middle region from the outer region.

tance to e�ciently design BTA approaches and in particular texture operators, which
is further discussed and detailed in Section 3 as well as in Chapters 2 and 3.

2.5. Biomedical image modalities
When compared to the broad research field of computer vision, analyzing texture in
biomedical images can rely on highly specific properties of the latter. In particular,
most biomedical imaging modalities rely on controlled acquisition protocols allow-

Photographic image analysis Biomedical image analysis

translation global equivariance global equivariance

rotation no invariance local invariance

scale local invariance no invariance

cars in photographic imagery collagen junctions in lung CT



TEXTURE AGGREGATION [DEPEURSINGE2017]
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• Texture characterizes transitions between voxel values 

• Operator’s response maps                                    must be aggregated over a 
region of interest (ROI) to get a scalar texture measurement 

• E.g., provide estimates of features statistics
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Figure 1.12: 2D texture functions f1 and f2 (synthetic tumors) are analyzed with a
collection of convolutional circularly symmetric texture operators {G1,G2,G3} with
functions {g1, g2, g3}. The latter are 2D Laplacians of Gaussians (LoG, see Section ??
of Chapter 3) at di↵erent scales and have di↵erent spatial supports G1,n ⇥G2,n. The
resulting response maps h fi

n are revealing distinct properties of both the core and the
margin of the tumors. In particular, h f2

1 (x) highlights the core texture of f2. This
is verified when averaging the response maps5 over the core region Mcore to obtain
scalar measurements ⌘n, where ⌘ f1

1 < ⌘
f2
1 . Likewise, h f2

1 (x) highlights the margin of the
tumor in f2, where ⌘ f1

1 < ⌘
f2
1 . The texture scales captured by g2 and g3 are too large

and do not discriminate well between f1 and f2, neither for the core nor for the margin
of the tumors.

5The average of the absolute values of hfi
n (x) is computed since LoGs are band-pass functions in the

Fourier domain and have zero mean.
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INTEGRATIVE AGGREGATION FUNCTIONS

• Undesirable effets of averaging 

• Example with operator: Laplacians of Gaussian (LoG) 
            applied to all image positions 

• Operators’ responses are averaged over 

• Feature covariances can be better for aggregation [Cirujeda2016}

original image         with 
regions                        I

M

feature spacef(x)

Ma,M b,M c

The averaged responses 
over the entire image 
does not correspond  
to anything visually!

Nor biologically!

FEATURE MAPS AND AGGREGATION FUNCTIONS

• From texture operators to texture measurements 

• The operator       is typically applied to all positions       of the image by 
“sliding” its window                          over the image 

• Yields feature maps as 

• Regional texture measurements can be obtained from the aggregation of                              
         over a region of interest       

• E.g., provide estimates of features statistics 
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• Background - Radiomics 

• Personalized tumor phenotyping in PET - CT 
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• Image mining: intensity versus texture 

• Texture analysis: definition and qualitative review 

• The QuantImage platform 

• Results 

• Head and Neck cancer: importance of geometry 

• Lung cancer: importance of aggregation 
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• Laplacian of Gaussian (LoG) filters 

• Operator: second-order derivative of a Gaussian 

• Texture at multiple image scales (varying            ) 

• Widely used (e.g.,                 [Ganeshan2012]) 

• Advantages 

• Translation-equivariant, locally rotation-invariant, easily extendable to 3D 

• Drawbacks 

• Insensitive to directional  
texture patterns

COMMON RADIOMICS TEXTURE FEATURES [DEPEURSINGE2017C]
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survival curves were evaluated by a non-parametric log
rank test. Following this Cox regression (forward stepwise
model) tested whether any of the parameters (texture, SUV,
or clinical stage and their interactions) were independent
predictors of survival. For all statistical tests, a probability
value (p) of less than 0.05 was considered significant.

Results

Based on PET, CT, and EUS imaging, the number of
patients with stage !II and >II were eight and 13, respec-
tively (stage II, n¼ 8; stage III, n¼ 8; and stage IV, n¼ 5). Of
the 21 patients with oesophageal cancer 14 had ADC and
seven had SCC at histology. The median (range) tumour
SUVmean and SUVmax for all the patients was 4.8 (1.9e9.8)
and 11.4 (2.5e32.5). Table 1 summarizes patient demo-
graphics (clinical stage, histology, and SUV). Twelve of 21
patients diedwithin 24months of their PET-CT. The shortest
survival time was 4 months.

The relationship between tumour heterogeneity and
metabolism (SUVmax and SUVmean) is summarized in
Table 2. With high filter values (i.e., coarse texture), entropy
demonstrated significant positive correlations and unifor-
mity negative correlations with SUVmax and SUVmean The

best correlations were obtained for SUVmean (Table 2, Fig 2a:
uniformity, r¼e0.754, p< 0.0001; Table 2, Fig 2b: entropy,
r¼ 0.748, p¼ 0.0001). SUVmean also showed statistically
significant but weaker correlations with texture at lower
filter values. Entropy and uniformity values without image
filtration did not show any significant association with
SUVmean or SUVmax. Tumours of advanced stage exhibited
significantly greater heterogeneity for filter values 1.5e2.0
(medium texture; Table 3). The most statistically significant
difference between patients with stages I/II and those with
stages III/IV was for measurements using a filter value of 1.5
(Table 3; entropy p¼ 0.027, uniformity p¼ 0.032). There
was no statistical difference in heterogeneity between these
groups of patients on unfiltered CT images. Although
tumour FDG uptake (SUVmean and SUVmax) was higher in
patients with advanced disease, the difference was not
statistically significant. Furthermore, there were no statis-
tically significant differences in either tumour texture or
FDG uptake between patients with ADC and SCC.

Survival analysis

Table 4 summarizes the results of the derived ROC
threshold values for texture, SUV and clinical stage and the
results of KM survival analysis. KM survival curves were

Figure 1 (a) Conventional unenhanced CT image with the oesophageal lesion and corresponding images selectively displaying (b) fine,
(c) medium, and (d) coarse oesophageal lesion texture, respectively. Fine, medium, and coarse textures correspond to oesophageal lesion
features of different sizes and intensity variations extracted by the image filter thereby showing varying degrees of coarseness.
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survival curves were evaluated by a non-parametric log
rank test. Following this Cox regression (forward stepwise
model) tested whether any of the parameters (texture, SUV,
or clinical stage and their interactions) were independent
predictors of survival. For all statistical tests, a probability
value (p) of less than 0.05 was considered significant.

Results

Based on PET, CT, and EUS imaging, the number of
patients with stage !II and >II were eight and 13, respec-
tively (stage II, n¼ 8; stage III, n¼ 8; and stage IV, n¼ 5). Of
the 21 patients with oesophageal cancer 14 had ADC and
seven had SCC at histology. The median (range) tumour
SUVmean and SUVmax for all the patients was 4.8 (1.9e9.8)
and 11.4 (2.5e32.5). Table 1 summarizes patient demo-
graphics (clinical stage, histology, and SUV). Twelve of 21
patients diedwithin 24months of their PET-CT. The shortest
survival time was 4 months.

The relationship between tumour heterogeneity and
metabolism (SUVmax and SUVmean) is summarized in
Table 2. With high filter values (i.e., coarse texture), entropy
demonstrated significant positive correlations and unifor-
mity negative correlations with SUVmax and SUVmean The

best correlations were obtained for SUVmean (Table 2, Fig 2a:
uniformity, r¼e0.754, p< 0.0001; Table 2, Fig 2b: entropy,
r¼ 0.748, p¼ 0.0001). SUVmean also showed statistically
significant but weaker correlations with texture at lower
filter values. Entropy and uniformity values without image
filtration did not show any significant association with
SUVmean or SUVmax. Tumours of advanced stage exhibited
significantly greater heterogeneity for filter values 1.5e2.0
(medium texture; Table 3). The most statistically significant
difference between patients with stages I/II and those with
stages III/IV was for measurements using a filter value of 1.5
(Table 3; entropy p¼ 0.027, uniformity p¼ 0.032). There
was no statistical difference in heterogeneity between these
groups of patients on unfiltered CT images. Although
tumour FDG uptake (SUVmean and SUVmax) was higher in
patients with advanced disease, the difference was not
statistically significant. Furthermore, there were no statis-
tically significant differences in either tumour texture or
FDG uptake between patients with ADC and SCC.

Survival analysis

Table 4 summarizes the results of the derived ROC
threshold values for texture, SUV and clinical stage and the
results of KM survival analysis. KM survival curves were

Figure 1 (a) Conventional unenhanced CT image with the oesophageal lesion and corresponding images selectively displaying (b) fine,
(c) medium, and (d) coarse oesophageal lesion texture, respectively. Fine, medium, and coarse textures correspond to oesophageal lesion
features of different sizes and intensity variations extracted by the image filter thereby showing varying degrees of coarseness.
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survival curves were evaluated by a non-parametric log
rank test. Following this Cox regression (forward stepwise
model) tested whether any of the parameters (texture, SUV,
or clinical stage and their interactions) were independent
predictors of survival. For all statistical tests, a probability
value (p) of less than 0.05 was considered significant.

Results

Based on PET, CT, and EUS imaging, the number of
patients with stage !II and >II were eight and 13, respec-
tively (stage II, n¼ 8; stage III, n¼ 8; and stage IV, n¼ 5). Of
the 21 patients with oesophageal cancer 14 had ADC and
seven had SCC at histology. The median (range) tumour
SUVmean and SUVmax for all the patients was 4.8 (1.9e9.8)
and 11.4 (2.5e32.5). Table 1 summarizes patient demo-
graphics (clinical stage, histology, and SUV). Twelve of 21
patients diedwithin 24months of their PET-CT. The shortest
survival time was 4 months.

The relationship between tumour heterogeneity and
metabolism (SUVmax and SUVmean) is summarized in
Table 2. With high filter values (i.e., coarse texture), entropy
demonstrated significant positive correlations and unifor-
mity negative correlations with SUVmax and SUVmean The

best correlations were obtained for SUVmean (Table 2, Fig 2a:
uniformity, r¼e0.754, p< 0.0001; Table 2, Fig 2b: entropy,
r¼ 0.748, p¼ 0.0001). SUVmean also showed statistically
significant but weaker correlations with texture at lower
filter values. Entropy and uniformity values without image
filtration did not show any significant association with
SUVmean or SUVmax. Tumours of advanced stage exhibited
significantly greater heterogeneity for filter values 1.5e2.0
(medium texture; Table 3). The most statistically significant
difference between patients with stages I/II and those with
stages III/IV was for measurements using a filter value of 1.5
(Table 3; entropy p¼ 0.027, uniformity p¼ 0.032). There
was no statistical difference in heterogeneity between these
groups of patients on unfiltered CT images. Although
tumour FDG uptake (SUVmean and SUVmax) was higher in
patients with advanced disease, the difference was not
statistically significant. Furthermore, there were no statis-
tically significant differences in either tumour texture or
FDG uptake between patients with ADC and SCC.

Survival analysis

Table 4 summarizes the results of the derived ROC
threshold values for texture, SUV and clinical stage and the
results of KM survival analysis. KM survival curves were

Figure 1 (a) Conventional unenhanced CT image with the oesophageal lesion and corresponding images selectively displaying (b) fine,
(c) medium, and (d) coarse oesophageal lesion texture, respectively. Fine, medium, and coarse textures correspond to oesophageal lesion
features of different sizes and intensity variations extracted by the image filter thereby showing varying degrees of coarseness.
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patients with advanced disease, the difference was not
statistically significant. Furthermore, there were no statis-
tically significant differences in either tumour texture or
FDG uptake between patients with ADC and SCC.

Survival analysis

Table 4 summarizes the results of the derived ROC
threshold values for texture, SUV and clinical stage and the
results of KM survival analysis. KM survival curves were
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• Gray level co-occurence matrices (GLCM) 

• Operator: counting co-occurrence of pixel values 

• Widely used (e.g., [Fried2016],                 )  

• Advantages 

• Translation-equivariant, easily extendable to 3D 

• Drawbacks 

• Not locally rotation-invariant (unless averaged over directions),  
poor multi-scale characterization,  
requires arbitrary gray-level reduction

COMMON RADIOMICS TEXTURE FEATURES [DEPEURSINGE2017C]
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• Deep convolutional neural networks (CNNs) [Andrearczyk2017] 

• Advantages 

• Translation-equivariant, extremely versatile (learns operators) 

• Drawbacks 

• Not locally rotation-invariant, requires huge amount of training data in 3D 

COMMON RADIOMICS TEXTURE FEATURES [DEPEURSINGE2017C]
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• Locally-oriented 3D Riesz wavelets [Chenouard2012, Dicente2017b] 

• Operator: directional filters behaving like local partial image derivatives 

• E.g., second-order: 

• Suitable for exploring first- and higher-order transitions between voxel values 

• Multi-scale (wavelets) 

• Steerable 

• Finds the 3D direction maximizing local image derivatives 

• Combines directional sensitivity with local rotation-invariance 

COMMON RADIOMICS TEXTURE FEATURES [DEPEURSINGE2017C]
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Regional Lung Texture Analysis
The prototype regional distributions of the morphological tissue

properties of classic versus atypical UIPs were learned using support
vector machines (SVMs). The SVM is a supervised machine learning
algorithm that can learn the complex relationship between a group of
variables (ie, the vector vl) and the presence or absence of a class from
an ensemble of examples called the training set.28 Once the SVMmodel
has been built from the example cases, it can predict the class of an un-
seen case with a confidence score (called computer score thereinafter).
The group of variables feeding SVMs consisted of the responses (ie,
energies) of the multiscale Riesz filters in each of the 36 anatomical re-
gions of the lungs (Fig. 3). The size of the vector vl regrouping the re-
sponses of the 6 Riesz filters at 4 scales from the 36 regions was
equal to 864.

To compare Riesz wavelets with other features that could capture
the radiological phenotype of diffuse lung disease, 2 different feature
groupswere extracted for each region to provide a baseline performance:
15 histogram bins of the gray levels in the extended lung window
[−1000; 600] Hounsfield units (HU) and 3D gray-level co-occurrence
matrices (GLCM).29 Statistical measures from GLCMs are popular tex-
ture attributes that were used by several studies in the literature to

characterize the morphological properties of lung tissue associated with
interstitial lung diseases.16,17,20,21 They consist in counting the co-
occurrence of voxels with identical gray level values that are separated
by a distance d, which results in a co-occurrence matrix. Eleven statistics
were extracted from these matrices29 as texture attributes. The choices
ofd and the number of gray levels were optimized by considering values
in {−3; 3} and {8, 16, 32}, respectively. The size of the vector of attri-
butes vlwas 540 for the gray-level histogram attributes (calledHU there-
inafter) and 396 for the GLCM attributes.

RESULTS
A leave-one-patient-out cross-validation evaluation was used to

estimate the performance of the proposed approach. The leave-one-
patient-out cross-validation consisted of using all patients but 1 to train
the SVM model and to measure the prediction performance on the re-
maining test patient. The prediction performance was then averaged
over all possible combinations of training and test patients. Receiver
operating characteristic (ROC) curves of the system's performance in
classifying between classic and atypical UIP are shown in Figure 4 for
different feature groups and their combinations. The ROC curves were
obtained by varying the decision threshold between the minimum and

TABLE 2. Localization of the Lung Masks

⊥ Vertical ⊥ Axial ⊥ Coronal ⊥ Sagittal

Apical, central, basal Peripheral, middle, axial Left, right Anterior, posterior

The lungs are split perpendicularly to 4 axes.25

Images can be viewed online in color at www.investigativeradiology.com.

FIGURE 2. Second-order Riesz filters characterizing edges along the main image directions X, Y, Z and 3 diagonals XY, XZ, and YZ. Figure 2 can be viewed
online in color at www.investigativeradiology.com.
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INTERPRETATION OF GEOMETRY [DEPEURSINGE2017B]

• Directionally-insensitive texture operators (e.g., locally  
rotation-invariant GLCMs or LoGs) cannot distinguish  
between the following patterns 

•   

• Importance of directional sensitivity combined with  
local rotation invariance [Dicente2017, Depeursinge2017b]
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3D GLCMs 3D LoGs aligned 3D Riesz

Fig. 3 [54] Top row: three synthetic examples of LOIDs. The latter simulate, e.g., possible vascular structures. Bottom
row: corresponding feature values obtained for three texture analysis approaches. Only aligned 3D Riesz wavelets are
able to clearly di↵erentiate the three LOID configurations. The feature values were averaged over 13 explored directions
for GLCMs. For both 3D LoGs and Riesz wavelets, the average energy of the response maps were computed, and the
scale of the filters were optimized (seven values of � for the LoGs and four dyadic scales for Riesz wavelets). The six
measures of the aligned Riesz wavelets correspond to the six components of the 3D Hessian (i.e., second-order Riesz
transform).

rotation invariance property stated by Eq. (4) is much more di�cult. The majority of the texture operators
proposed in the literature are invariant to local rotations because they are insensitive to image directions. This
is the case for LoGs (used in TexRAD) and for approaches that are averaging operator’s responses or the fi-
nal texture measures over all explored directions [35]. The latter strategy is used by most texture operators,
including gray level matrices (e.g., Gray-Level Co-occurrence Matrices, GLCM [81], Gray-Level Run Length,
GLRL [67], Gray-Level Size Zone Matrices, GLSZM [136]) as well as most non-steerable wavelet designs11,
which are all used in PyRadiomics, LifeX, CGITA, IBEX, MaZda and OncoRadiomics). Unfortunately, texture
operators that are insensitive to image directions have limited characterization abilities. In particular, they
cannot capture the Local Organization of Image Directions (LOID), which is found to be an important property
in biomedical texture [31]. One solution to satisfy Eq. (4) while being able to characterize the LOIDs is to
have a consistent criteria to locally align the operators, which is the case of LBPs and specific filter designs
(steerable, circular or spherical harmonics) [48, 56, 139, 142]. This is demonstrated in 3D using three simple
synthetic examples of LOIDs (see Fig. 3) that only steerable Riesz wavelets [19, 56] are able to distinguish.
Even when the LOIDs are aligned with respect to the main image axes, neither GLCMs nor LoGs will “see” a
substantial di↵erence between the three LOID types.

It is worth noting that the texture operators learned by the vast majority of CNN design are not satisfying
Eq. (4), with the notable exception of the recently proposed steerable CNN design in [27]. In addition, the risks
of using data augmentation to enforce classical CNNs to be invariant to local rotations were also pointed out by
Marcos et al. in [74], where the latter strategy destroys the directional specificity of the convolutional kernels.

3.2 Feature aggregation

The problem of finding adequate feature aggregation functions is quite intuitive, but yet very challenging.
In other words, even if the texture operators are fulfilling all desired properties specified in Section 3.1 and
highlighting clear texture properties in their response map, the choice of the aggregation function to convert
the operator’s responses into scalar measurements is crucial to ensure success. This is particularly true when
the underlying spatial stochastic process (emerging from the diversity of tissue biology) is non-stationary. The
most obvious issue arises when using the sum or average aggregation function, which are nevertheless used in
most texture analysis approaches tested in radiomics studies and software. The risk of using the average for the

11The separable and orthogonal wavelet designs are not rotation-invariant and inappropriate for MIA [42].
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• Importance of directional sensitivity combined with  
local rotation invariance [Dicente2017, Depeursinge2017b]

INTERPRETATION OF GEOMETRY [DEPEURSINGE2017B]
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QUANTIMAGE CLOUD PLATFORM [DICENTE2017]

2. Upload batch of 
PET-CT images

3. Get results

radiomics.hevs.ch

1. Set-up the
parameters

• Free access, encrypted data transfer 

• Image alignment and normalization 

• State-of-the-art 3D radiomics features 

• Intensity (incl. PET specific) 

• 3D texture 

• Part of the image biomarker  
standardisation initiative (IBSI)  
[Zwanenburg2017]

QuantImage: An Online Tool for High-
Throughput 3D Radiomics Feature 

Extraction in PET-CT
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to appear in:
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HEAD AND NECK CANCER [DEPEURSINGE2017B]

• Visual analysis of F-FDG PET images allows more accurate 
staging than American Joint Committee on Cancer (AJCC)[Yoo2013] 

• Quantitative analyses of metabolic intensity could predict Overall 
Survival (OS) and Disease-Free Survival (DFS) [Castelli2017] 

• The interleaved sub-tumoral regions of proliferating cancer  
cells and necrosis results in metabolic heterogeneity 

1. Use 3D texture analysis of PET images to quantify internal metabolism 
morphology ? 

2. Use it to further predict OS and DFS ? 

3. Differences between texture analysis approaches ?

29
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HEAD AND NECK CANCER [DEPEURSINGE2017B]

• 108 patients: 62 from Rennes and 46 from Lausanne 

• PET >8 weeks before RT, no metastasis at diagnosis 

• Gross Tumor Volume (GTV) manually segmented on each PET/CT 

• 6-months minimal follow-up (OS: 40 events, DFS: 47 events) 

• Texture features parameters optimized 

• Cox LASSO regression model [Simon2011] 

• Stratified 10-fold cross-validation (100 repetitions)

30

Riesz (27 features)
GLCMs (11 features)
LoGs (14 features)

Importance of directional sensitivity combined  
with local rotation invariance
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• 92 lung adenocarcinoma from Stanford Hospital and Clinics 

• Gross Tumor Volume (GTV), Ground Glass Opacities (GGO) 
and solid regions        contoured in CT in 3D 

• DFS times available 

• 12 months cutoff (23 recurrences versus 69 remissions) 

1. Difference when using GTV, GGO or solid ROIs  
for aggregation? 

2. Difference between average and covariance  
for aggregation?

LUNG CANCER [CIRUJEDA2016]
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• 2nd-order aligned Riesz, 3 scales (18 features) 

• Support vector machines (SVM) 

• Average versus covariance kernel 

• 10-fold CV (5 repetitions)

LUNG CANCER [CIRUJEDA2016]
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Regional Lung Texture Analysis
The prototype regional distributions of the morphological tissue

properties of classic versus atypical UIPs were learned using support
vector machines (SVMs). The SVM is a supervised machine learning
algorithm that can learn the complex relationship between a group of
variables (ie, the vector vl) and the presence or absence of a class from
an ensemble of examples called the training set.28 Once the SVMmodel
has been built from the example cases, it can predict the class of an un-
seen case with a confidence score (called computer score thereinafter).
The group of variables feeding SVMs consisted of the responses (ie,
energies) of the multiscale Riesz filters in each of the 36 anatomical re-
gions of the lungs (Fig. 3). The size of the vector vl regrouping the re-
sponses of the 6 Riesz filters at 4 scales from the 36 regions was
equal to 864.

To compare Riesz wavelets with other features that could capture
the radiological phenotype of diffuse lung disease, 2 different feature
groupswere extracted for each region to provide a baseline performance:
15 histogram bins of the gray levels in the extended lung window
[−1000; 600] Hounsfield units (HU) and 3D gray-level co-occurrence
matrices (GLCM).29 Statistical measures from GLCMs are popular tex-
ture attributes that were used by several studies in the literature to

characterize the morphological properties of lung tissue associated with
interstitial lung diseases.16,17,20,21 They consist in counting the co-
occurrence of voxels with identical gray level values that are separated
by a distance d, which results in a co-occurrence matrix. Eleven statistics
were extracted from these matrices29 as texture attributes. The choices
ofd and the number of gray levels were optimized by considering values
in {−3; 3} and {8, 16, 32}, respectively. The size of the vector of attri-
butes vlwas 540 for the gray-level histogram attributes (calledHU there-
inafter) and 396 for the GLCM attributes.

RESULTS
A leave-one-patient-out cross-validation evaluation was used to

estimate the performance of the proposed approach. The leave-one-
patient-out cross-validation consisted of using all patients but 1 to train
the SVM model and to measure the prediction performance on the re-
maining test patient. The prediction performance was then averaged
over all possible combinations of training and test patients. Receiver
operating characteristic (ROC) curves of the system's performance in
classifying between classic and atypical UIP are shown in Figure 4 for
different feature groups and their combinations. The ROC curves were
obtained by varying the decision threshold between the minimum and

TABLE 2. Localization of the Lung Masks

⊥ Vertical ⊥ Axial ⊥ Coronal ⊥ Sagittal

Apical, central, basal Peripheral, middle, axial Left, right Anterior, posterior

The lungs are split perpendicularly to 4 axes.25

Images can be viewed online in color at www.investigativeradiology.com.

FIGURE 2. Second-order Riesz filters characterizing edges along the main image directions X, Y, Z and 3 diagonals XY, XZ, and YZ. Figure 2 can be viewed
online in color at www.investigativeradiology.com.
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Fig. 5 [35] Predictive performance of OS and DFS for oropharyngeal cancers treated with radiotherapy when using
the three distinct groups of texture operators in a Cox-LASSO model [131]. The performance was estimated using the
Concordance Index (CI) [83] and a stratified 10-fold cross-validation with 108 patients.

Tab. 1 [24] Covariance- versus average- based aggregation for the prediction of NSCLC recurrence from CT.

covariance-based SVMs average-based SVMs

accuracy sensitivity specificity F1-score accuracy sensitivity specificity F1-score

GGO 81.33 ± 0.12 87.38 ± 0.05 78.33 ± 0.13 80.75 ± 0.12 74.38 ± 0.08 77.65 ± 0.14 68.97 ± 0.07 69.58 ± 0.07

Solid 82.00 ± 0.15 85.14 ± 0.13 76.67 ± 0.14 78.13 ± 0.14 79.90 ± 0.14 85.96 ± 0.09 76.45 ± 0.11 76.20 ± 0.15

GTV 82.67 ± 0.17 87.62 ± 0.05 78.33 ± 0.13 80.89 ± 0.12 75.62 ± 0.17 83.17 ± 0.15 70.24 ± 0.17 68.97 ± 0.19

for aggregation not only outperformed the average when using sub-tumoral regions (i.e., GGO and solid); it
even achieved best results when using the GTV. This suggested that the “co-activations” of the aligned Riesz
operators are carrying important information and were adequately aggregated over distinct tumor habitats.

We used various strategies to reveal and interpret the molecular profiles of sub-tumoral regions of GBMs in
MRI using either patch-based classification or the Potts model [54] (see Fig. 6). Whereas showing promising
qualitative results so far, we are currently working on validation strategies of the generated sub-tumoral maps.

module 3, patient 60137, slice 17, riesz and intensity, inner patches, mean AUC=0.99module 3, patient 60137, slice 17, riesz and intensity, inner patches, mean AUC=0.99

over-expressed

under-expressed

module 3
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image cropped image Potts segmentation regrouped regions

GBM in contrast-
enhanced T1 MRI

tumoral region CHW-Potts
segmentation

automatically regrouped
sub-tumoral regions

patch-based analysis

Fig. 6 Revealing and interpreting sub-tumoral regions of GBMs using patch-based classification (top row) and the Potts
model (bottom row). The top row shows patch-based local decision values of a LASSO logistic regression trained to
discriminate between over- and under-expressed molecular clusters as defined in [70]. The bottom row shows sub-tumoral
components that are homogeneous in terms of texture operators’ responses (2D circular harmonic wavelets), segmented
using the Potts model.

3.4 Software

In parallel to the development of advanced texture analysis methods and their validation in radiomics studies,
we started to create cloud-based platforms to provide front-end accesses to our latest research methods and
results. The latter are of primary importance to allow clinicians to address their own research hypotheses using
radiomics methods.

Together with the team of Prof. Rubin at Stanford University, we developed the Quantitative Feature
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• 2nd-order aligned Riesz, 3 scales (18 features) 

• Support vector machines (SVM) 

• Average versus covariance kernel 

• 10-fold CV (5 repetitions)

LUNG CANCER [CIRUJEDA2016]
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Regional Lung Texture Analysis
The prototype regional distributions of the morphological tissue

properties of classic versus atypical UIPs were learned using support
vector machines (SVMs). The SVM is a supervised machine learning
algorithm that can learn the complex relationship between a group of
variables (ie, the vector vl) and the presence or absence of a class from
an ensemble of examples called the training set.28 Once the SVMmodel
has been built from the example cases, it can predict the class of an un-
seen case with a confidence score (called computer score thereinafter).
The group of variables feeding SVMs consisted of the responses (ie,
energies) of the multiscale Riesz filters in each of the 36 anatomical re-
gions of the lungs (Fig. 3). The size of the vector vl regrouping the re-
sponses of the 6 Riesz filters at 4 scales from the 36 regions was
equal to 864.

To compare Riesz wavelets with other features that could capture
the radiological phenotype of diffuse lung disease, 2 different feature
groupswere extracted for each region to provide a baseline performance:
15 histogram bins of the gray levels in the extended lung window
[−1000; 600] Hounsfield units (HU) and 3D gray-level co-occurrence
matrices (GLCM).29 Statistical measures from GLCMs are popular tex-
ture attributes that were used by several studies in the literature to

characterize the morphological properties of lung tissue associated with
interstitial lung diseases.16,17,20,21 They consist in counting the co-
occurrence of voxels with identical gray level values that are separated
by a distance d, which results in a co-occurrence matrix. Eleven statistics
were extracted from these matrices29 as texture attributes. The choices
ofd and the number of gray levels were optimized by considering values
in {−3; 3} and {8, 16, 32}, respectively. The size of the vector of attri-
butes vlwas 540 for the gray-level histogram attributes (calledHU there-
inafter) and 396 for the GLCM attributes.

RESULTS
A leave-one-patient-out cross-validation evaluation was used to

estimate the performance of the proposed approach. The leave-one-
patient-out cross-validation consisted of using all patients but 1 to train
the SVM model and to measure the prediction performance on the re-
maining test patient. The prediction performance was then averaged
over all possible combinations of training and test patients. Receiver
operating characteristic (ROC) curves of the system's performance in
classifying between classic and atypical UIP are shown in Figure 4 for
different feature groups and their combinations. The ROC curves were
obtained by varying the decision threshold between the minimum and

TABLE 2. Localization of the Lung Masks

⊥ Vertical ⊥ Axial ⊥ Coronal ⊥ Sagittal

Apical, central, basal Peripheral, middle, axial Left, right Anterior, posterior

The lungs are split perpendicularly to 4 axes.25

Images can be viewed online in color at www.investigativeradiology.com.

FIGURE 2. Second-order Riesz filters characterizing edges along the main image directions X, Y, Z and 3 diagonals XY, XZ, and YZ. Figure 2 can be viewed
online in color at www.investigativeradiology.com.
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MRI using either patch-based classification or the Potts model [54] (see Fig. 6). Whereas showing promising
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Importance of the feature aggregation function 
to avoid mixing tumor habitats

INTEGRATIVE AGGREGATION FUNCTIONS

• Undesirable effets of averaging 

• Example with operator: Laplacians of Gaussian (LoG) 
            applied to all image positions 

• Operators’ responses are averaged over 

• Feature covariances can be better for aggregation [Cirujeda2016}

original image         with 
regions                        I

M

feature spacef(x)

Ma,M b,M c

The averaged responses 
over the entire image 
does not correspond  
to anything visually!

Nor biologically!

FEATURE MAPS AND AGGREGATION FUNCTIONS

• From texture operators to texture measurements 

• The operator       is typically applied to all positions       of the image by 
“sliding” its window                          over the image 

• Yields feature maps as 

• Regional texture measurements can be obtained from the aggregation of                              
         over a region of interest       

• E.g., provide estimates of features statistics 
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OUTLINE

• Background - Radiomics 

• Personalized tumor phenotyping in PET - CT 

• Methods 

• Image mining: intensity versus texture 

• Texture analysis: definition and qualitative review 

• The QuantImage platform 

• Results 

• Head and Neck cancer: importance of geometry 

• Lung cancer: importance of aggregation 

• Conclusions and perspectives
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CONCLUSIONS & PERSPECTIVES

• Internal tumor structure (CT) and metabolism (PET) 
morphology could be modeled with 3D texture to predict 
clinical outcomes 

• OS, DFS in Head and Neck as well as Lung cancer 

• Large differences between texture analysis approaches 

• Importance directional sensitivity and local rotation invariance 

• Impact of the feature aggregation function 

• Online tools available 

• The QuantImage platform for 3D PET/CT 

• Limitations and perspectives 

• Validation on large and independent cohorts 

• Protocol and features standardization

2. Upload batch of 
PET-CT images

3. Get results

radiomics.hevs.ch

1. Set-up the
parameters

36



• THANKS !

QuantImage: An Online Tool for High-
Throughput 3D Radiomics Feature 

Extraction in PET-CT

Yashin Dicente Cid

to appear in:
Biomedical Texture Analysis: Fundamentals, Applications and Tools
Editors: Adrien Depeursinge, Omar S. Al-Kadi and J. Ross Mitchel
Elsevier-MICCAI book series, 2017.

Collaborators: J. Castelli, R. Schaer, N. Scher, A. Pomoni, J. Prior, and A. Depeursinge

https://radiomics.hevs.ch

QuantImage: An Online Tool for High-
Throughput 3D Radiomics Feature 

Extraction in PET-CT

Yashin Dicente Cid

to appear in:
Biomedical Texture Analysis: Fundamentals, Applications and Tools
Editors: Adrien Depeursinge, Omar S. Al-Kadi and J. Ross Mitchel
Elsevier-MICCAI book series, 2017.

Collaborators: J. Castelli, R. Schaer, N. Scher, A. Pomoni, J. Prior, and A. Depeursinge

https://radiomics.hevs.ch

QuantImage: An Online Tool for High-
Throughput 3D Radiomics Feature 

Extraction in PET-CT

Yashin Dicente Cid

to appear in:
Biomedical Texture Analysis: Fundamentals, Applications and Tools
Editors: Adrien Depeursinge, Omar S. Al-Kadi and J. Ross Mitchel
Elsevier-MICCAI book series, 2017.

Collaborators: J. Castelli, R. Schaer, N. Scher, A. Pomoni, J. Prior, and A. Depeursinge

https://radiomics.hevs.ch

Roger Schaer 
Yashin Dicente 
Pol Cirujeda 
Henning Müller 
MEDGIFT group

Julien Fageot 
Michaël Unser 
BIG group

John O. Prior 
Niklaus Schaefer

Daniel L. Rubin 
Todd Aguilera 
Sandy Napel 
Olivier Gevaert 

Joel Castelli

Edited by  
Adrien Depeursinge,
Omar S Al-Kadi, and J. Ross Mitchell

BIOMEDICAL
TEXTURE ANALYSIS

FUNDAMENTALS, TOOLS
AND CHALLENGES



REFERENCES (SORTING IN ALPHABETICAL ORDER)

38

[Aerts2014] Aerts, H. J. W. L.; Velazquez, E. R.; Leijenaar, R. T. H.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; 
Rietveld, D.; Hoebers, F.; Rietbergen, M. M.; Leemans, C. R.; Dekker, A.; Quackenbush, J.; Gillies, R. J. & Lambin, P.  
Decoding Tumour Phenotype by Noninvasive Imaging Using a Quantitative Radiomics Approach  
Nature Communications, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved, 2014, 5

[Andrearczyk2017] Andrearczyk, V. & Whelan P. F.  
Deep Learning in Texture Analysis and Its Application to Tissue Image Classification. 
Biomedical Texture Analysis: Fundamentals, Applications and Tools, Elsevier-MICCAI Society Book series, Elsevier, 2017, 95-129

[Castelli2017] Castelli, J.; Depeursinge, A.; Ndoh, V.; Prior, J. O.; Ozsahin, M.; Devillers, A.; Bouchaab, H.; Chajon, E.; de Crevoisier, R.; Scher, N.; Jegoux, 
F.; Laguerre, B.; De Bari, B.; Bourhis, J. 
A PET-based nomogram for oropharyngeal cancers  
European Journal of Cancer, 2017, 75, 222-230

[Chenouard2012] Chenouard, N. & Unser, M. 
3D Steerable Wavelets in Practice 
IEEE Transactions on Image Processing, 2012, 21, 4522-4533

[Cirujeda2016] Cirujeda, P.; Müller, H.; Rubin, D.; Aguilera, T. A.; Jr., B. W. L.; Diehn, M.; Binefa, X. & Depeursinge, A.  
A 3-D Riesz-Covariance Texture Model for Prediction of Nodule Recurrence in Lung CT  
IEEE Transactions on Medical Imaging, 2016, 35(12), 2620-2630

[Depeursinge2014] Depeursinge, A.; Foncubierta-Rodrguez, A.; Van De Ville, D. & Müller, H. 
Three-Dimensional Solid Texture Analysis and Retrieval in Biomedical Imaging: Review and Opportunities 
Medical Image Analysis, 2014, 18, 176-196

[Depeursinge2015] Depeursinge, A.; Yanagawa, M.; Leung, A. N. & Rubin, D. L.  
Predicting Adenocarcinoma Recurrence Using Computational Texture Models of Nodule Components in Lung CT  
Medical Physics, 2015,42, 2054-2063

[Depeursinge2017] Depeursinge, A.; Fageot, J. & Al-Kadi, O. S. 
Fundamentals of Texture Processing for Biomedical Image Analysis: A General Definition and Problem Formulation  
Biomedical Texture Analysis: Fundamentals, Applications and Tools, Elsevier-MICCAI Society Book series, Elsevier, 2017, 1-27 

[Depeursinge2017b] Depeursinge, A. 
Multi-Scale and Multi-Directional Biomedical Texture Analysis: Finding the Needle in the Haystack  
Biomedical Texture Analysis: Fundamentals, Applications and Tools, Elsevier-MICCAI Society Book series, Elsevier, 2017, 29-53 

[Depeursinge2017c] Depeursinge, A. & Fageot, J.  
Biomedical Texture Operators and Aggregation Functions: A Methodological Review and User’s Guide  
Biomedical Texture Analysis: Fundamentals, Applications and Tools, Elsevier-MICCAI Society Book series, Elsevier, 2017, 55-94 



REFERENCES (SORTING IN ALPHABETICAL ORDER)

39

[Depeursinge2017d] Depeursinge, A.; Dicente Cid, Y.; Schaer, R.; de Crevoisier, R.; Prior, J. O.; Castelli, J.  
Comparing 18-FDG PET 3D texture attributes for the prediction of survival and recurrence in oropharyngeal cancers treated with radiotherapy 
Workshop on the Prediction and Modeling of Response to Molecular and External Beam Radiotherapies, Le Bono, France, 2017 

[Dicente2017] Dicente Cid, Y.; Castelli, J.; Schaer, R.; Scher, N. ; Pomoni, A. ; Prior, J. & Depeursinge, A.  
QuantImage: An Online Tool for High-Throughput 3D Radiomics Feature Extraction in PET-CT  
Biomedical Texture Analysis: Fundamentals, Applications and Tools, Elsevier-MICCAI Society Book series, Elsevier, 2017, 349-377

[Dicente2017b] Dicente Cid, Y.; Müller, H.; Platon, A.; Poletti, P.-A. & Depeursinge, A.  
3-D Solid Texture Classification Using Locally-Oriented Wavelet Transforms  
IEEE Transactions on Image Processing, 2017, 26(4), 1899-1910 

[Fried2016] Fried, D. V.; Mawlawi, O.; Zhang, L.; Fave, X.; Zhou, S.; Ibbott, G.; Liao, Z. & Court, L. E.  
Potential Use of 18F-fluorodeoxyglucose Positron Emission Tomography–Based Quantitative Imaging Features for Guiding Dose Escalation 
in Stage III Non-Small Cell Lung Cancer  
International Journal of Radiation Oncology, 2016, 94, 368-376

[Ganeshan2012] Ganeshan, B.; Skogen, K.; Pressney, I.; Coutroubis, D. & Miles, K.  
Tumour heterogeneity in oesophageal cancer assessed by CT texture analysis: Preliminary evidence of an association with tumour 
metabolism, stage, and survival 
Clinical Radiology , 2012, 67, 157-164

[Ganeshan2013] Ganeshan, B.; Goh, V.; Mandeville, H. C.; Ng, Q. S.; Hoskin, P. J. & Miles, K. A.  
Non-Small Cell Lung Cancer: Histopathologic Correlates for Texture Parameters at CT  
Radiology, 2013, 266(1), 326-336

[Gatenby2013] Gatenby, R. A.; Grove, O. & Gillies, R. J.  
Quantitative Imaging in Cancer Evolution and Ecology  
Radiology, 2013, 269, 8-14

[Gerlinger2012] Gerlinger, M.; Rowan, A. J.; Horswell, S.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; Tarpey, P.; Varela, I.; 
Phillimore, B.; Begum, S.; McDonald, N. Q.; Butler, A.; Jones, D.; Raine, K.; Latimer, C.; Santos, C. R.; Nohadani, M.; Eklund, A. C.; Spencer-
Dene, B.; Clark, G.; Pickering, L.; Stamp, G.; Gore, M.; Szallasi, Z.; Downward, J.; Futreal, P. A. & Swanton, C.  
Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing  
New England Journal of Medicine, 2012, 366, 883-892

[Haralick1973] Haralick, R. M.; Shanmugam, K. & Dinstein, I. 
Textural Features for Image Classification  
IEEE Transactions on Systems, Man and Cybernetics, 1973, 3, 610-621

[Kidd2008] Kidd, E. A. & Grigsby, P. W.  
Intratumoral Metabolic Heterogeneity of Cervical Cancer  
Clinical Cancer Research, 2008, 14, 5236-5241



REFERENCES (SORTING IN ALPHABETICAL ORDER)

40

[Kumar2012] Kumar, V.; Gu, Y.; Basu, S.; Berglund, A.; Eschrich, S. A.; Schabath, M. B.; Forster, K.; Aerts, H. J. W. L.; Dekker, A.; Fenstermacher, D.; 
Goldgof, D. B.; Hall, L. O.; Lambin, P.; Balagurunathan, Y.; Gatenby, R. A. & Gillies, R. J.  
Radiomics: The Process and the Challenges 
Magnetic Resonance Imaging, 2012, 30, 1234-1248 

[Leijenaar2015] Leijenaar, R. T.; Nalbantov, G.; Carvalho, S.; van Elmpt, W. J.; Troost, E. G.; Boellaard, R.; Aerts, H. J.; Gillies, R. J. & Lambin, P.  
The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis  
Scientific Reports, 2015, 5, 11075

[Mattonen2014] Mattonen, S. A.; Palma, D. A.; Haasbeek, C. J. A.; Senan, S.; & Ward, A. D.  
Early prediction of tumor recurrence based on CT texture changes after stereotactic ablative radiotherapy (SABR) for lung cancer  
Medical Physics, 2014, 41(3),1-14 

[Orlhac2014] Orlhac, F.; Soussan, M.; Maisonobe, J.-A.; Garcia, C. A.; Vanderlinden, B. & Buvat, I.  
Tumor Texture Analysis in 18F-FDG PET: Relationships Between Texture Parameters, Histogram Indices, Standardized Uptake Values, 
Metabolic Volumes, and Total Lesion Glycolysis  
Journal of Nuclear Medicine, 2014, 55, 414-422

[Ravanelli2013] Ravanelli, M.; Farina, D.; Morassi, M.; Roca, E.; Cavalleri, G.; Tassi, G. & Maroldi, R. 
Texture analysis of advanced non-small cell lung cancer (NSCLC) on contrast-enhanced computed tomography: prediction of the response to 
the first-line chemotherapy 
European Radiology, 2013, 23(12), 3450-3455 

[Simon2011] Simon, N.; Friedman, J; Hastie, T. & Tibshirani, R.  
Regularization paths for Cox’s proportional hazards model via coordinate descent 
Journal of Statistical Software, 2011, 39(5), 1-13 

[Yoo2013] Yoo, J.; Henderson, S. & Walker-Dilks, C.  
Evidence-based Guideline Recommendations on the Use of Positron Emission Tomography Imaging in Head and Neck Cancer  
Clinical Oncology, 2013, 25(4), e33-e66

[Zwanenburg2017] Zwanenburg, A.; Leger, S.; Vallières, M. & Löck, S.  
Image biomarker standardisation initiative 
CoRR. 2016;abs/1612.0. 



Learning with less 
labels in medical 
image analysis

Veronika 
Cheplygina @vcheplygina

http://www.veronikach.com



Case courtesy of A.Prof Frank Gaillard, Radiopaedia.org, rID: 8095

Does this person have COPD?

Where is the emphysema? 

How large are the airways?



Case courtesy of Radswiki, Radiopaedia.org, rID: 11384



Learning curve



Big data



Representative & annotated data



Case courtesy of Radswiki, Radiopaedia.org, rID: 11384



Su, J., Vargas, D. V., & Kouichi, S. (2017). One pixel attack for fooling deep neural networks.
arXiv preprint arXiv:1710.08864.



This talk: three “solutions”



Solution 1: Multiple instance learning



Case courtesy of Radswiki, Radiopaedia.org, rID: 11384



Case courtesy of Radswiki, Radiopaedia.org, rID: 11384



MILSupervised





Case courtesy of A.Prof Frank Gaillard, Radiopaedia.org, rID: 8095

Does this person have COPD?



Image = COPD or not (lung function), 50 ROIs Texture filters

…

HistogramsMIL



Search for “COPD-like” patch

vs

Classify subject directly

Cheplygina, V., Sorensen, L., Tax, D. M. J., Pedersen, J. H., Loog, M., & de Bruijne, M. (2014). Classification of COPD 
with multiple instance learning. In International Conference on Pattern Recognition (pp. 1508-1513). 



Case courtesy of A.Prof Frank Gaillard, Radiopaedia.org, rID: 8095

Where is the emphysema? 

Ground
truth?
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MIL classifier

Tr
ai

ni
ng

Te
st



Evaluate stability

Fraction of agreement on positives

Cheplygina, V., Sørensen, L., Tax, D. M. J., de Bruijne, M., & Loog, M. (2015)  Label Stability in Multiple Instance 
Learning. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 539-546

Any patches always positive?





Solution 2: Transfer learning

Not learning “from scratch”



• Use other labeled datasets



Source

…as training data

Target



… to find good features

Cheplygina, V., Peña, I. P., Pedersen, J. H., Lynch, D. A., Sørensen, L., & de Bruijne, M. (2017). 
Transfer learning for multi-center classification of chronic obstructive pulmonary disease.
In Journal of Biomedical and Health Informatics, to appear



… even if task and/or modality different

Case courtesy of A.Prof Frank Gaillard, Radiopaedia.org, rID: 51158



Which datasets to use? (Most similar? Most different?)

Case courtesy of A.Prof Frank Gaillard, Radiopaedia.org, rID: 51158



Cheplygina, V., Moeskops, P., Veta, M., Bozorg, B. D., & Pluim, J. (2017). Exploring the similarity of medical 
imaging classification problems. In Large-Scale Annotation of Biomedical Data and Expert Label 
Synthesis (MICCAI LABELS) (pp. 59-66)

Meta-learning: how to quantify similarity of data?



Solution 3: Crowdsourcing



You do it all the time!







Case courtesy of A.Prof Frank Gaillard, Radiopaedia.org, rID: 8095

How large are the airways?







Cheplygina, V., Perez-Rovira, A., Kuo, W., Tiddens, H. A., & de Bruijne, M. (2016). Early Experiences with 
Crowdsourcing Airway Annotations in Chest CT. In Large-Scale Annotation of Biomedical Data and Expert 
Label Synthesis (MICCAI LABELS), pp. 209-218





@vcheplygina

http://www.veronikach.com

Learning with less labels

• Multiple instance learning
• Transfer learning
• Crowdsourcing

Thanks to:

IMAG/e, Eindhoven University of Technology
BIGR, Erasmus MC Rotterdam
PRLab, Delft University of Technology

?





Radiomics for cancer outcome 
modeling: image analysis and 
machine learning challenges

Mathieu Hatt, PhD, HDR – CR INSERM

mathieu.hatt@inserm.fr

Laboratoire du Traitement de l’Information Médicale

LaTIM, UMR INSERM-UBO 1101, Brest

Lausanne, November 13rd 2017

Workshop on predictive
radiology for precision
medicine

mailto:mathieu.hatt@inserm.fr


2Introduction
Radiomics: exponential growth

Radiomics: ~430 publications (nov. 2017)

Source: web of science



3Introduction
History of radiomics

Gillies, et al. The biology underlying molecular imaging in oncology: from

genome to anatome and back again. Clin Radiol 2010

The terms “radiomics” and “radiogenomics” were already employed in 2010 
to describe how imaging features can reflect gene expression:



4Introduction
Radiomics: evolution or revolution?

Radiomics has become popular since 2012

Merely a new incarnation of computer-aided

diagnosis (CAD) systems (exist since the 80’s)

Textural features (a large chunck of radiomics

features) exist since the 70’s and have been used in 

medical imaging since the 90’s [1-3]

Numerous publications before 2012 could be

categorized as « radiomics studies »

1. Schad, et al. MR tissue characterization of intracranial tumors by means of texture analysis. Magn Reson Imaging 1993
2. Mir, et al. Texture analysis of CT-images for early detection of liver malignancy. Biomed Sci Instrum. 1995
3. El Naqa, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern

Recognit. 2009



5Introduction
Radiomics: evolution or revolution?

What has changed?

New artificial intelligence techniques

e.g. neural networks, deep learning

Efficiency+cost of computing power

e.g. GPUs (graphical processing units)

Improvements of imaging devices (hardware+software)

e.g. PSF modeling and ToF in PET

Availability of data

e.g. images + clinical + histopathology + genetics/transcriptomics

Evolving applications for multimodal medical imaging

e.g. therapy follow-up, treatment planning
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Rationale

Introduction

Macroscopic/microscopic heterogenity

Tumours are heterogeneous entities [1]

Genetic, cellular, tissular

Hypothesis: caracteristics in images (macro scale) reflect at least partly

caracteristics in smaller scales (including genetic) [2]

1. Gerlinger, et al. Intratumor heterogeneity and branched evolution revealed by multiregion

sequencing. N Engl J Med. 2012
2. Segal, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging.
Nat Biotechnol. 2007

Histology Biomarkers Proteomics Genomics
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7Introduction
Early works (example)

Segal, et al. Decoding global gene expression programs in liver

cancer by noninvasive imaging. Nat Biotechnol. 2007



8Radiomics
Standard worfklow

Radiomics

Genomics (and other –omics)

Clinical data
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Segmentation step: how critical for radiomics?

Accuracy very important

Especially for shape descriptors

Some textural features are also highly sensitive

Radiomics
Segmentation: impact?

Hatt, et al. Characterization of PET/CT images using texture analysis: the past, the present… any

future? Eur J Nucl Med Mol Imaging 2017
Hatt, et al. Robustness of intratumour ¹⁸F-FDG PET uptake heterogeneity quantification for therapy

response prediction in oesophageal carcinoma. Eur J Nucl Med Mol Imaging 2013

Low sphericity High sphericity

High surface irregularity Low surface irregularity
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Segmentation step: how critical for radiomics?

Radiomics
Segmentation: impact?

Hatt, et al. Tumour functional sphericity from PET images: prognostic

value in NSCLC and impact of delineation method. EJNMMI 2017 (in press)

Ground truth ACO FLAB

Threshold 40% Threshold 50%GARAC
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Segmentation step: how critical for radiomics?

Radiomics
Segmentation: impact?

Hatt, al. Tumour functional sphericity from PET images: prognostic value

in NSCLC and impact of delineation method. EJNMMI 2017 (in press)

87 NSCLC patients
(stage II-III)



12Radiomics
Worfklow

Radiomics

Genomics (and other –omics)

Clinical data



13Radiomics
Challenges and issues: the volume/intensity confounding issue

Tixier, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images

predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 2011
Hatt, et al. Baseline ¹⁸F-FDG PET image-derived parameters for therapy response prediction in oesophageal

cancer. Eur J Nucl Med Mol Imaging 2011

High 

correlation with

volume?

FDG PET, esophageal cancer patients

N=41 N=50



14Radiomics
Challenges and issues: the volume/intensity confounding issue

Hatt, et al. Robustness of intratumour ¹⁸F-FDG PET uptake heterogeneity

quantification for therapy response prediction in oesophageal carcinoma. Eur J Nucl

Med Mol Imaging 2013



15Radiomics
Challenges and issues: the volume/intensity confounding issue

Brooks, et al. The effect of small tumor volumes on studies of

intratumoral heterogeneity of tracer uptake. J Nucl Med 2014



16Radiomics
Challenges and issues: the volume/intensity confounding issue

Brooks, et al. The effect of small tumor volumes on studies of

intratumoral heterogeneity of tracer uptake. J Nucl Med 2014

- A single texture: entropyGLCM
- Calculated following one single workflow:

- Linear discretization into 152 bins
- 2 GLCM matrices for 2 directions (vertical+horizontal) followed by averaging
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Workflow complexity

Radiomics

PET image

« Let’s compute some textural features!» Useful

quantification of 

heterogeneity

Challenges and issues: the complexity of textural features

Hatt, et al. Characterization of PET/CT images using texture analysis: the

past, the present… any future? Eur J Nucl Med Mol Imaging 2017
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Workflow complexity

Radiomics

PET image

« Let’s compute some textural features!» Useful

quantification of 

heterogeneity

Challenges and issues: the complexity of textural features

Hatt, et al. Characterization of PET/CT images using texture analysis: the

past, the present… any future? Eur J Nucl Med Mol Imaging 2017



19Radiomics
Challenges and issues: the volume/intensity confounding issue

Hatt, et al. 18F-FDG PET uptake characterization through texture analysis:

investigating the complementary nature of heterogeneity and functional tumor

volume in a multi-cancer site patient cohort. J Nucl Med 2015

N=555 tumors
5 cancer types
FDG PET images



20Radiomics
Challenges and issues: the volume/intensity confounding issue

Hatt, et al. 18F-FDG PET uptake characterization through texture analysis:

investigating the complementary nature of heterogeneity and functional tumor

volume in a multi-cancer site patient cohort. J Nucl Med 2015

rs = 0.98



21Radiomics
Challenges and issues: the volume/intensity confounding issue

Hatt, et al. 18F-FDG PET uptake characterization through texture analysis:

investigating the complementary nature of heterogeneity and functional tumor

volume in a multi-cancer site patient cohort. J Nucl Med 2015

256 → 64 grey-levels



22Radiomics
Challenges and issues: the volume/intensity confounding issue

Aerts, et al. Decoding tumour phenotype by noninvasive imaging 

using a quantitative radiomics approach. Nat Commun. 2014



23Radiomics
Challenges and issues: the volume/intensity confounding issue

Aerts, et al. Decoding tumour phenotype by noninvasive imaging 

using a quantitative radiomics approach. Nat Commun. 2014

4-features signature: 
intensity, shape, textural, textural in the wavelet domain 
energy, compactness, grey-level non-uniformity (GLNU), GLNU high-low-high subband



24Radiomics
Challenges and issues: the volume/intensity confounding issue

Aerts, et al. Decoding tumour phenotype by noninvasive imaging 

using a quantitative radiomics approach. Nat Commun. 2014

4-features signature: 
intensity, shape, textural, textural in the wavelet domain 
energy, compactness, grey-level non-uniformity (GLNU), GLNU high-low-high subband

Supplemental table (C-index)

Rank Spearman correlations (N=300 head and neck cancer patients):
energy: 0.62, compactness: 0.80, GLNU: 0.99, GLNU_HLH: 0.94
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Dependency on reconstruction: PET

Radiomics
Challenges and issues: dependency on reconstruction

Gavalis, et al. Variability of textural features in FDG PET images due to different acquisition modes

and reconstruction parameters. Acta Oncol. 2010
Yan, et al. Impact of Image Reconstruction Settings on Texture Features in 18F-FDG PET. J Nucl

Med 2015
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Dependency on reconstruction: PET

Radiomics
Challenges and issues: dependency on reconstruction

Gavalis, et al. Variability of textural features in FDG PET images due to different acquisition modes

and reconstruction parameters. Acta Oncol. 2010
Yan, et al. Impact of Image Reconstruction Settings on Texture Features in 18F-FDG PET. J Nucl

Med 2015

OSEM OSEM+PSF

OSEM+TOF OSEM+PSF+TOF
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Dependency on reconstruction: PET

Radiomics
Challenges and issues: dependency on reconstruction

Gavalis, et al. Variability of textural features in FDG PET images due to different acquisition modes

and reconstruction parameters. Acta Oncol. 2010
Yan, et al. Impact of Image Reconstruction Settings on Texture Features in 18F-FDG PET. J Nucl

Med 2015

Multicentric data !
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Shafiq-UI-Hassan, et al. Intrinsic dependencies of CT radiomic features on

voxel size and number of gray levels. Med Phys. 2017

Dependency on reconstruction: CT

Radiomics
Challenges and issues: dependency on reconstruction
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Dependency on pre-processing quantization

Quantization/discretization is required to build 

texture matrices

Radiomics
Challenges and issues: the complexity of textural features
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𝐼𝐹 𝑝 = 1 + 𝐸
𝐼 𝑝 − 𝐼𝑚𝑖𝑛

𝐹

2. Leijenaar, et al. The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor

texture analysis. Acta Oncol 2013

Linear transform1
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1. Tixier, et al. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in FDG PET. J Nucl Med 2012
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Histogram equalization3

3. Haralick, et al. Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics 1973
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Fixed width bins
(0.5 SUV, 10 HU)
QuantizationW

Linear transform into 64 bins
QuantizationB

Desseroit, et al. Reliability of PET/CT shape and heterogeneity features in functional

and morphological components of Non-Small Cell Lung Cancer tumors: a

repeatability analysis in a prospective multi-center cohort. J Nucl Med 2017

Radiomics
Challenges and issues: the complexity of textural features

Dependency on pre-processing quantization
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Lack of standardisation

Most papers do not provide enough details

Difficult/impossible to reproduce the results

Describe all choices and implementation details in appendix

Some studies rely on available software (black boxes) that may

not be properly validated (or at least that do not give the same

results as other existing codes/software)

Authors may not know exactly how the features they use are 

actually implemented.

→ Meta-analysis impossible (entropy in paper 1 may not be the 

same entropy as in paper 2 !)

Sharing data and methods

Radiomics
Challenges and issues: lack of standardisation

Hatt, et al. Characterization of PET/CT images using texture analysis: the past, the present… any

future? Eur J Nucl Med Mol Imaging 2017
Vallieres, et al. Radiomics: Responsible Research For Faster Clinical Translation. J Nucl Med 2017
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Challenges and issues: nomenclature

Radiomics

Bundschuh, et al. Textural Parameters of Tumor Heterogeneity in ¹⁸F-FDG PET/CT for

Therapy Response Assessment and Prognosis in Patients with Locally Advanced

Rectal Cancer. J Nucl Med. 2014

Nomenclature
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Challenges and issues: nomenclature

Radiomics

Bundschuh, et al. Textural Parameters of Tumor Heterogeneity in ¹⁸F-FDG PET/CT for

Therapy Response Assessment and Prognosis in Patients with Locally Advanced

Rectal Cancer. J Nucl Med. 2014

Nomenclature

1st order features ≠ textural features !
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Image Biomarker Standardisation Initiative. Multicentre initiative for

standardization of image biomarkers. https://arxiv.org/abs/1612.07003

Imaging biomarkers standardisation initiative
18 research groups fom 8 countries:

USA

Germany

The Netherlands

France

Canada

United Kingdom

Italy

Switzerland

Challenges and issues: lack of standardization

Radiomics
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Image Biomarker Standardisation Initiative. Multicentre initiative for

standardization of image biomarkers. https://arxiv.org/abs/1612.07003

Imaging biomarkers standardisation initiative
18 research groups fom 8 countries:

USA

Germany

The Netherlands

France

Canada

United Kingdom

Italy

Switzerland

Challenges and issues: lack of standardization

Radiomics



36Radiomics
Worfklow

Radiomics

Genomics (and other –omics)

Clinical data
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Inapproriate statistical analyses

Radiomics
Challenges and issues: statistical analysis

Chalkidou, et al. False Discovery Rates in PET and CT Studies with Texture

Features: A Systematic Review. PLoS One. 2015
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Machine learning

Choosing a classifier/feature selection method?

Radiomics
Challenges and issues: how to use machine learning?

Parmar, et al. Machine Learning methods for Quantitative

Radiomic Biomarkers. Sci Rep. 2015
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Machine learning

Choosing a classifier/feature selection method?

Radiomics
Challenges and issues: how to use machine learning?

Parmar, et al. Machine Learning methods for Quantitative

Radiomic Biomarkers. Sci Rep. 2015
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Machine learning

Choosing a classifier/feature selection method?

Radiomics
Challenges and issues: how to use machine learning?

Parmar, et al. Machine Learning methods for Quantitative

Radiomic Biomarkers. Sci Rep. 2015
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Machine learning

Potential for deep learning approaches?

Convolutional Neural Networks = recent evolution

of neural networks

Radiomics
Challenges and issues: potential of deep learning?

Lecun, et al. Deep Learning. Nature. 2015
Suzuki. Overview of deep learning in medical imaging. Radiol Phys

Technol. 2017
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Machine learning

Potential for deep learning approaches?

Convolutional Neural Networks = recent evolution

of neural networks

Radiomics
Challenges and issues: potential of deep learning?

Lecun, et al. Deep Learning. Nature. 2015
Suzuki. Overview of deep learning in medical imaging. Radiol Phys

Technol. 2017
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Deep learning applications

Radiomics
Challenges and issues: potential of deep learning?
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Deep learning applications

Radiomics
Challenges and issues: potential of deep learning?

Antropova, et al. A deep feature fusion methodology for breast cancer diagnosis

demonstrated on three imaging modality datasets. Med Phys 2017

Standard
radiomics
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Deep learning applications

Radiomics
Challenges and issues: potential of deep learning?

Antropova, et al. A deep feature fusion methodology for breast cancer diagnosis

demonstrated on three imaging modality datasets. Med Phys 2017

Full field digital mamography (FFDM)
N=245

Ultrasound (US)
N=1125

DCE-MRI
N=690 
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Deep learning applications

Radiomics
Challenges and issues: potential of deep learning?

Antropova, et al. A deep feature fusion methodology for breast cancer diagnosis

demonstrated on three imaging modality datasets. Med Phys 2017



47Radiomics

Radiomics

Very dynamic field of research

Numerous challenges and methodological issues

Lack of standardization (workflow, features)

Difficult statistical validation

Potential solutions, perspectives

Larger, prospective, multicentric studies

Use robust machine learning methods (deep learning?)

Standardization of radiomics (ongoing)

Responsible research (share methods & data)

Conclusions
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DEVELOPING PREDICTIVE 
MARKERS FOR PAIN AND 

ANALGESIA
Eugene Duff



.

Motivation: addressing translational challenges for FMRI

FMRI  has  provided  extensive  understanding  of  pain  related  neural 
dynamics associated with an enormous range of factors: 

Analgesics 
Placebo/nocebo 
Sensitization 
Attention 
Reward responsiveness 
Negative Emotions 
Relative Relief 
etc..

Yet, clinical translation of this understanding remains an ambition.

Meta-analyses
Improved analyses
New types of study?



.

An fMRI-Based Neurologic Signature of Physical Pain 



.

An fMRI-Based Neurologic Signature of Physical Pain 



.

An fMRI-Based Neurologic Signature of Physical Pain 



.
Preston & Wise, 2010, Drug Discovery Today

What is the value of human FMRI in CNS drug development?
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What is the value of human FMRI in CNS drug development?

Preston & Wise, 2010, Drug Discovery Today
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FMRI
Go 

Pause/Stop

Decision making: Predictive imaging

Phase 1

Decision-making protocol ideally suited to multivariate prediction 
methods

But, what criteria/features do we use for Go / No Go decision?
How do we validate?   
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Three pillars of drug survival

Morgan et al 2013 
Drug Discovery Today
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Three pillars of drug survival

Target site exposure  Binding to the target Expression of 
functional activation

1 2 3

Meta-analysis of 44 Phase 
2A Clinical trials

Morgan et al 2013 
Drug Discovery Today
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Three pillars of drug survival: FMRI surrogates

Target site exposure  Binding to the target Expression of 
functional activation

1 2 3

Pharmacodynamic effect

Morgan et al 2013 
Drug Discovery Today
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Three pillars of drug survival: FMRI surrogates

Target site exposure  Binding to the target Expression of 
functional activation

1 2 3

Pharmacodynamic effect: 
- does the drug alter brain responses in any way?
- can the drug condition be discriminated from placebo?

Pharmacodynamic effect

Morgan et al 2013 
Drug Discovery Today
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Three pillars of drug survival: FMRI surrogates

Target site exposure  Binding to the target Expression of 
functional activation

1 2 3

Evidence of efficacy

{ 

Evidence of efficacy: does the modulation suggest efficacious action?
-  e.g. reductions in established pain regions?  

- but will this enhance screening beyond pain ratings?
- changes common to existing efficacious compounds

- could identify additional features predictive of analgesic 
action, not directly tied to pain relief

- potentially identify signature effects earlier
- identify signature effects in non-responders



.

- Aim to learn to identify analgesic effects on pain responses from multistudy data

- Test our ability to identify these effects in new studies



.

FMRI CNS Drug Assessment Protocol

Review Q2 Work Plan (April-June) 

• Status of TDCS study. 

• Interim report. 

• Discuss status of publication list (on last page). 

• Overview of results from preliminary comparisons and general status of project. 

Confirm Q3 Work Plan (July-September) 

• Complete and submit HBM “publication”. 

• Complete and circulate comparison report internally.   

o Decision: Include TDCS in publication or have two separate papers? 

• Acquisition of TDCS study to be completed by 31 August.   

• Analysis of TDCS study begins. 

• Finalize work schedule for 2013–2014. 
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Cross validated 
discrimination accuracy

Signature of Clinical efficacy

Implementing our decision procedures

Cross validated 
discrimination accuracy

Pharmacodynamic effect

MVPA Analysis
• Whole-brain data, ICA-based features 
• Forced-choice linear SVM
• Subject-wise drug vs placebo training 

and prediction
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FMRI CNS Drug Assessment Protocol

Review Q2 Work Plan (April-June) 

• Status of TDCS study. 

• Interim report. 

• Discuss status of publication list (on last page). 

• Overview of results from preliminary comparisons and general status of project. 

Confirm Q3 Work Plan (July-September) 

• Complete and submit HBM “publication”. 

• Complete and circulate comparison report internally.   

o Decision: Include TDCS in publication or have two separate papers? 

• Acquisition of TDCS study to be completed by 31 August.   

• Analysis of TDCS study begins. 

• Finalize work schedule for 2013–2014. 
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FMRI CNS Drug Assessment Protocol

Review Q2 Work Plan (April-June) 

• Status of TDCS study. 

• Interim report. 

• Discuss status of publication list (on last page). 

• Overview of results from preliminary comparisons and general status of project. 

Confirm Q3 Work Plan (July-September) 

• Complete and submit HBM “publication”. 

• Complete and circulate comparison report internally.   

o Decision: Include TDCS in publication or have two separate papers? 

• Acquisition of TDCS study to be completed by 31 August.   

• Analysis of TDCS study begins. 

• Finalize work schedule for 2013–2014. 

Go/No-Go decision rules must be predefined, and will be dependent on:
• strength of effects in existing efficacious compounds
• current confidence in the compound 
• demand for a successful compound
• expected subsequent cost of development
• expected economics of a successful compound



Analgesic Datasets



Control Datasets
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Learning to identify CNS drug action and efficacy using multistudy fMRI data

Event related studies (Analgesics)

Pregb (PTNP)

Tram (PTNP)

Pregb (Fibro)

Naprox (OA)

Gabap

Remi (T/P)

Remi (L)

THC

Training datasets

Testing datasets

(QC) Greater than 5% of pain regions showing lower 
responses than database
Significant prediction accuracy

Non-significant drug placebo discrimination (p<0.15)

Non-significant prediction accuracy

Decision rules



Results



Results



Results
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Results

Duff et al, Learning to identify CNS drug action and efficacy using multistudy fMRI data. STM 2015
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Between study prediction



.

Conclusions

• Proof-of-concept that FMRI can play a role in clinical trials, and similar predictive 
clinical applications. 

• It is possible to quantitatively integrate existing data into new studies, increasing the 
robustness and range of inferences.

• Standardised but evolving protocols can be important for clinical imaging and many 
other applications.

• Obtaining (and publishing) datasets to combine remains very challenging, particuarly 
commercial/clinical data.

• Immediate focus should be on protocols combining datasets within laboratories.
• Machine learning approaches are an effective way to boost sensitivity in these 

contexts
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Refinements to prediction 

FMRI
Go 

Pause/Stop

FMRI
Go 

Pause/Stop

Accelerate

• Alternate approaches to generating signatures of efficacy that do not 
require existing efficacious compounds

• Resting state

Phase 1

Likely disease applications
• Expand MVPA outputs

Adjust dose



Further and ongoing work

Resting-state pharmacologic studies 

Pain Biomarker for Newborn babies (FMRI & EEG)

Biomarker for Antidepressant Action 

Biomarker for Chronic Pain

Dataset Harmonisation
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Primer – Genetic variation
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Primer – Genes & brain diseases
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Primer – Common genetic variation and the Psychiatric Genomic Consortium

Tsuji et al., 2010 Human Molecular Genetics Ripke et al., 2014 Nature
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Primer – Intermediate phenotypes

BEHAVIOR

Heritability is the 
proportion of 
phenotypic variation 
associated with 
genetic variation (as 
opposed to shared 
and non-shared 
environmental 
variation). Heritability 
of schizophrenia is 
estimated around 
80% (McGuffin, Riley 
et al., 2001). 

No genetic variation so far 
investigated explains more 
than a minimal proportion of 
risk for schizophrenia (Hirsch 
and Weinberger, 2003).

How can we study the 
influence of multiple genetic 
variants on the biology of 
schizophrenia?

INTERMEDIATE PHENOTYPES

Any neurobiological measures 
associated with the genetic risk 
variants of a disease, e.g., 
biochemical, 
neurophysiological, 
neuroanatomical, 
neuropsychological (Bearden, 
2006).

Intermediate phenotypes are 
heritable but independent of 
illness status, therefore can 
also be studied in healthy 
siblings of patients.

DNA CELLS BRAIN 
NETWORKS



Egan et al., 2003 Cell

• BDNF;
• Single exonic

SNP;
• Note the sample

sizes
• Clear molecular

function, but
limited clinical
translation.

Primer – Classic imaging genetics



A standard way to look at gene-trait associations is to search for risk alleles. Then, risk alleles are combined into
ensembles reflecting the additive genetic component of a heritable trait.
We still don’t know which genes are impacted by these variants – but we know the polygenic risk score is not related
with clinical outcome (Hettige et al., 2016 Schizophrenia Research; Wimberley et al., 2017 Schizophrenia Bulletin).

‘Guilty alleles’ or ‘guilty genes’?

DRD2

Ripke et al., 2014 Nature
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Background – many players in schizophrenia risk

Kauppi et al., 2014
Schizophrenia Bulletin



The central nervous system is hierarchically organized, and we can use this 
aspect of its organization to understand how it works.

Parikshak and Geschwind, 2014 Nature Rev Genetics

Background – dealing with complexity



Gamazon et al., 2015 Nature Genetics 10

Background – gene expression à function

• Genetic variants may affect gene
expression by modulating the
affinity of DNA binding factors.
• We can identify key genetic
variants via brain post mortem
studies.

Mechanisms

Gene expression may be
considered as a molecular trait and
can thus be predicted based on
genetic variants.

In turn, gene expression is key to
explain brain phenotypes.

Idea

Richiardi et al., 2015 Science



Schizophrenia is associated with genetic factors, and many risk loci have been identified. 
Since the expression of individual genes risk is co-regulated and results in the co-expression 
of gene sets, we hypothesized that the transcription context of schizophrenia risk genes may 
be associated with schizophrenia phenotypes.

Approach

Insights from molecular profiling Outlook: schizophrenia genes
Ongoing work on clinical
predictions merging
imaging & genetic data.

321
Translational genetics: DRD2

Co-expression networks afford
novel insights into how DRD2-
related genes are associated
with drug response.

How do we translate genetic
risk variants into biologically
plausible mechanisms of
risk and clinical translation?

+ +

Outline – functional translation of gene co-expression

11



2 31
Translational 

genetics:
DRD2

Insights from 

molecular profiling

Outlook: 

Schizophrenia
genes

12

Genetic variants translate gene expression into function

INTERMEDIATE 
PHENOTYPE

Preprocessing
post-mortem gene 
expression data in 
the DLPFC of non-
psychiatric 
individuals 
(Braincloud).

Identifying a genome-
wide unsupervised 
network of genes to 
model gene-gene 
relationships.
Then, we can select 
gene sets of interest.

Co-eQTLs are 
detected and 
collapsed into 
continuous indices 
that approximate co-
expression. 

Polygenic co-
expression 
indices are 
associated with 
intermediate 
phenotypes.

TRANSCRIPTOME CANDIDATE
NETWORK

POLYGENIC CO-
EXPRESSION INDEX

Translate knowledge derived from dead 
brains into models of living brains. 
à we need a common language

available both post mortem and in vivo.



Sullivan et al., 2003 Arch. Gen. Psychiatry

genetic variance

environmental variance 

Kaalund et al., 2013 Molecular Psychiatry

Gene of interest – schizophrenia, DRD2, and WM
• Twin and adoption studies established the strong

heritability of schizophrenia;

• Patients with schizophrenia show altered dopaminergic

neurotransmission and benefit from antipsychotics

which target the D2 dopamine receptor;



• Twin and adoption studies established the strong

heritability of schizophrenia;

• Patients with schizophrenia show altered dopaminergic

neurotransmission and benefit from antipsychotics

which target the D2 dopamine receptor;

• Schizophrenia-specific functional brain alterations are

related with D2 binding in the DLPFC;

• Similar alterations are found in unaffected siblings à

genetic basis of schizophrenia brain phenotypes?

Slifstein et al., 2015 JAMA PsychiatryCallicott et al., 2003 Am. J. of Psychiatry

Gene of interest – schizophrenia, DRD2, and WM



15

199 subjects (0-78 years, Braincloud)
23636 gene probes

D2L cluster included 85 genes

Co-expression prediction of DRD2 availability in DLPFC

Rank Marker Gene Gene Name MAF

1 rs2486064 CHIT1 Chitinase 1 0,22

2 rs6902039 GPLD1 Glycosylphosphatidylinositol
Specific Phospholipase D1 0,23

3 rs851436 OSR1 Odd-Skipped Related 1 0,48

4 rs9297283 POP1 Processing Of Precursor 1, 
Ribonuclease P/MRP Subunit 0,20

5 rs12940715 SDK2 sidekick cell adhesion molecule 2 0,12

6 rs1805453 DHX33 DEAH (Asp-Glu-Ala-His) Box 
Polypeptide 33 0,34

7 rs11213916 BTG4 B-Cell Translocation Gene 4 0,30

8 rs1037791 AGR2 Anterior Gradient 2 0,31

Pergola et al., 2017 Translational Psychiatry

SNPs were significant at p < .005.



We computed D’-values (y-axis) of each SNP genotype population (x-axis) with reference to 
the major homozygous population.

Boxplots shows leave-one-out cross-validation of D’-values. 

Genetic Score was defined as the mean of D’-values associated to subject’s genotypes.

CC = -0.18 CC = 0 CT = -0.06

Subject 1 Genetic Score = -0.08 

TT = 0 CT = -0.07 CT = -0.19

Subject 2 Genetic Score = -0.087 

Pergola et al., 2016 Psychological Medicine
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Translational genetics – D’ expression Index

A strength of this approach is that it does not assume a linear influence of allelic dosage.
It is an explicit modeling of additive genetics (no machine learning).
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The PCI is positively
correlated with gene co-
expression and thereby is
also positively correlated
with DRD2.

Translation – Polygenic Co-expression Index

We replicated the correlation in an
indipendent microarray dataset
(BrainEAC, Trazbuni et al., 2011).
The replication was significant and its
strength increased with data quality
indexed by RIN.

Pergola et al., 2017 Translational Psychiatry
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↑ D2 binding in the PFC 

à ↑ PFC BOLD during WM

↑ predicted DRD2 expression à ↑ PFC 
BOLD during WM in three independent 
samples of patients and controls.

Slifstein et al., 2015 JAMA Psychiatry

Pergola et al., 2017 Translational Psychiatry

The case of DRD2 – brain activity during n-back task

N = 124

N = 244

N = 29 SCZ

Voxel q (FDR) < .05, k = 6, masked for task activity



These results show the biological validity of the PCI identified via co-expression networks

The case of DRD2 – treatment response

↑ predicted expression à ↑ treatment response to
atypical antipsychotics in two independent samples
of patients (total N=87).

Blasi et al 2011 PNAS Pergola et al., 2017 Translational Psychiatry

Zhang et al., 2007 PNAS

↑ D2L à ↑ treatment response

19
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Brain activity during working memory performance

Individuals with low WM capacity benefit from
treatment with D2 agonists like bromocriptine.

Load-dependent DLPFC activation is associated
with DRD2 rs1076560 genotype. Note that the
effect changes dramatically between loads.

Gibbs and D’Esposito, 2005 Psychopharmacology Gelao et al., 2014 Psychopharmacology

Vijayraghavan et al., 2007 Nature Neuroscience



§ Discovery N = 50, Replication N = 50 (previous study)
§ Discovery: double-blind, crossover, randomized, placebo controlled trial with Bromocriptine 1.25 mg
§ DRD2-PCI as linear & quadratic predictor of bromocriptine response 
§ Differential accuracy (3-2-back) during WM performance (Cassidy et al., 2016 Journal of 
Neuroscience) to index individual WM capacity 
§ Differential PFC activation between loads as the corresponding neural substrate (3-2-back)

Selvaggi, Pergola, et al., in revision

Bromocriptine response depends non-linearly on DRD2-PCI

21

Behavior: DRUG × PCI2 p = .045
BOLD: DRUG × PCI2 cluster-level FWE p < .05
Bootstrapped p < .05



Discussion part 1 & 2
• The PCI approximates DRD2 co-expression.

• When assessing individual WM capacity
and its neural correlates, there was a U-
shaped relationship between predicted DRD2
co-expression and brain/behavioral phenotypes.

• This relationship was reverted by
bromocriptine, such that only participants with
low WM capacity manifested a visible change.

• Critically, individuals at the two extremes of
the curve have opposite allelic patterns.
Rather than risk alleles, the ensemble of DRD2-
related genetic variation is associated with
drug response based on its relationship with
gene expression.

RELEVANCE

Gene co-expression networks 
reveal novel genetic players 

in the regulation of 
dopaminergic transmission.

Allelic variation did not 
evolve to support drug 

response, but to sustain 
molecular processes such as 

gene expression. 

Different alleles can predict 
the same outcome when 
weighted for a cardinal 
principle of biological 

organization such as gene 
regulation.

22



Thank you for your 
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Thanks to all the people who 
contributed to this work!

Giulio.Pergola@uniba.it

Thanks for supporting this work:
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Imaging Genetics 
 

Partial Least Squares (PLS) 
 

Application to AD 
 

Distributed PLS 



Imaging Genetics 



Genome-wide Association Study (GWAS) 

  
•  Single Nucleotide Polymorphisms (SNPs) 
•  ~ 1 million genetic markers measured 
•  Sample acquisition cheap (£50 per participant) 



Genome-wide Association Study (GWAS) 

  
y = �0 + �1 ⇥ SNP +

NX

i=2

�ixi + ✏

•  Mass univariate testing 
•  P<5x10-8 is ‘genome-wide significant’  



Why Imaging Genetics? 

•  Imaging genetics uses imaging phenotypes in 
genetic studies 

•  Imaging phenotypes are ‘closer’ to the disorder 
than diagnoses 
–  Often diagnoses are ‘mixed bags’ 
–  Allows us to study how the disorder develops 



Early Imaging Genetics Example in AD 

•  APOE-e4 is a strong risk 
factor for AD 

•  Reiman et al. (1996) 
studied glucose 
metabolism 

•  APOE-e4 homozygotes 
showed reduced meta-
bolism in typical AD 
regions 



Imaging Genetics “Menu” 

Candidate ROI Many ROIs Voxelwise 

Candidate SNP 

Candidate Gene 

Genome-wide Gene 

Genome-wide SNP 

[Filippini et al. 2009] 
29,812 voxels 

1 SNP 

[Joyner et al. 2011] 
4 ROIs, 11 SNPs 

[Potkin et al. 2009] 
1 ROI, 317,503 SNPs 

[Stein et al. 2012] 
1 ROI, 1.1 mio SNPs [Stein et al. 2010] 

31,622 voxels 
448,293 SNPs 

[Hilbar et al. 2011] 
31,622 voxels 
18,044 Genes 



Partial Least Squares 



Imaging Genetics – Multiple Outputs 

•  Multivariate methods work well, however … 
… genetics data and imaging data are both highly 
multidimensional (P1 and P2 >> N) 

    … multiple imaging modalities 
•  The ‘easy’ way out 

–  Mass univariate 
•  no machine learning, P1 x P2 tests 

–  P1 (independent) multivariate analyses 
–  First identify patterns in one dataset (mainly imaging) 

followed by GWAS/multivariate analysis 



Principle Component Analysis (PCA) 

•  Common method to identify patterns in data… 
or to reduce dimensionality 

1.  PCA for imaging data, PCA for genetics data 
2.  Find the latent ‘features’ that correlate 

–  PCAs are computed independently 
–  No information transfer between images and genetics 



Methods for Multiple Outputs 

•  Multi-Task Learning (or Multi-Response Learning) 
–  Instead of doing P1 independent analyses 
–  Also regularize across different tasks (brain regions) 

•  Parallel Independent Component Analysis (ICA)  

•  Canonical Correlation Analysis (CCA) 
–  Close relative: reduced rank regression (RRR) 

•  Partial Least Squares (PLS) 



RRR <–> PLS <–> CCA 

PRNI, 2017 



Foundation of PLS 

•  Related to CCA 
–  Not maximizing correlation but covariance 

•  Two matched datasets X and Y, we aim to find a 
projection u and v, such that 
 
have the maximal covariance 

P
x

= X~u0 Py = Y~v0

argmax

~u,~v
cov(P

x

,P
y

)



Foundation of PLS 

•  Related to CCA 
–  Not maximizing correlation but covariance 

•  Two matched datasets X and Y, we aim to find a 
projection u and v, such that 
 
have the maximal covariance 

•  u and v provide weights for each original feature 
•  Further projections identified iteratively 

–  Deflating X and Y and computing the next projection 
–  We get series of projections: U=[u1,…,uN], V=[v1,…,vN] 

P
x

= X~u0 Py = Y~v0

argmax

~u,~v
cov(P

x

,P
y

)



SVD version of PLS 

•  Nowadays a popular used version of PLS is PLS-
SVD (singular value decomposition) 

•  Allows to compute U and V as 

•  Solves PLS in ‘one go’, but … 
... C is pretty large (P1 x P2) feature x feature 
–  1 mio SNPs times 300k voxels 

XY0 = C = U⇤V0

cross-covariance matrix 

M = U⇤V0

Diagonal matrix, singular values Unitary matrix, left singular vectors 

Unitary matrix,  
right singular vectors 



Memory efficient PLS-SVD 

•  ‘Rephrasing’ avoids computation of C 

•  Allows working with covariance matrices for X and 
Y of size NxN (subject x subject) 
… much more tractable!! 

B = A (A0Y0YA)
� 1

2

V = YB U = X
⇣
Y0YBL� 1

2

⌘
⇤ = L� 1

2

(X0XY0Y)A = AL
Diagonal matrix, 
eigenvalues 

Eigenvectors 



PLS in imaging genetics for AD 



PLS applied: Cortical Thickness in AD 

Genetics of cortical thickness in AD 
•  Loss of gray matter in AD 
•  Cortical thickness derived from structural 

T1 weighted MRI scans Marco Lorenzi 



PLS applied: Cortical Thickness in AD 

Genetics of cortical thickness in AD 
•  Loss of gray matter in AD 
•  Cortical thickness derived from structural 

T1 weighted MRI scans 

•  ADNI database 
–  300,000 mesh points 
–  1.1 mio SNPs 
–  1,192 subjects (HC, MCI, AD) 

•  639 training (HC, AD) 

… 

300,000 

… PLS 

1,100,000 

1,
19

2 



PLS applied: Cortical Thickness in AD 



PLS stability with re-sampling 



Results – Component 1 

  

Lorenzi*,Altmann*, et al. PNAS (in revision) 



Distributed PLS 



Genetic Data are Sensitive Data! 

  

Science, Aug 2017 



Avoid Bureaucracy! 

  



Meta analysis and online learning? 

•  Meta analysis 
–  Every participants runs a local univariate analysis 
–  Results (p-values, effect sizes) are shared and 

combined for a final result 
–  Common in large genetic studies 
–  Increasingly considered in imaging, e.g., ENIGMA 

•  Online learning 
–  Machine learning method 
–  Distributed data/data streams 
–  Models are updated with new batches of data 



Meta PLS 

•  Massively Multivariate Studies are small 
•  A “meta” version of PLS enables collaborative 

studies without the need to exchange individual 
level data 



Meta PLS 

•  Massively Multivariate Studies are small 
•  A “meta” version of PLS enables collaborative 

studies without the need to exchange individual 
level data [SIPAIM’16] 



Meta PLS 

•  Distributed PLS: 

x = C 

X Y’ 



Meta PLS 

•  Distributed PLS: 

•  Instead of C we can share the decomposition of 
                      with a reduced set of components 

x = C+C+C 

X Y’ 

C = U⇤V



Meta PLS 

•  We compute the final result as PLS of 

•  Approximation 
•  Depends on number of shared components 
•  Compare full PLS vs meta PLS (2-split) 

–  ‘component similarity’: ufull . u’meta 

–  Feature-wise error: ufull - u’meta 

X̃ = [U1, . . . ,Ud]

Ỹ = [V1⇤1, . . . ,Vd⇤d]



q brain features (~105)

N individuals chromosome 22 

chromosome 1 
… 

X Y’

=

U Λ V’

p SNPs 
(~106)  

Sequential PLS Meta PLS 

C1       C2      …    CM 
 
 
 

C1 

 C2 

 … 

 CM 

 
 
 

=

SVD - Partial least squares 
 



Meta-PLS vs Seq-PLS 

•  50 repetitions to compute mean and sd 
•  Shared components explain 90% of variability 



Meta-PLS vs Seq-PLS 



Meta-PLS vs Seq-PLS 



Number of shared components 



Practical considerations 

•  X and Y require centering and standardization 
before SVD 
–  How best done in a distributed setting? 
–  Effect of ‘late comers’ 

•  Exploring real world application within 

•  Meta PLS allows 
–  Processing large datasets with standard hardware 
–  Processing large datasets across different sites 
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Results – Imaging 

  



PLS & CCA 

•   PLS is CCA with “infinite regularization (L2)” 

rCCA: 

PLS: 
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