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We can leverage large imaging datasets and computing power
to improve healthcare: hospitals are sitting on a goldmine.

Methods are getting better very rapidly: semi- and fully-
automated tools will empower radiologists.

Integrating imaging with -omics will lead to vastly improved
understanding of disease: radiology is central to precision medicine.




Context and introduction




Medical and imaging data are growing
2013 2020

132000 km

53 ExaBytes » 2314 ExaBytes

inspired by [IDC/EMC, 2014]



Notable open data projects

NIH clinical center - chest CTs
30K+ subjects, | 00K+ images

[Wang et al-, CVPR 2017]

Medical ImageNet

000 chest CTs, 831 bone tumor CTs,
4K mammograms, 4K hand CTs

UK Biobank

Goal: 00K subjects with sMRI, rsfMRI, dwMRI, neuropsy,
genotype, vitals etc.

Child Mind Institute Healthy brain network

Goal: 0K subjects with sMRI (T1,T2,qT1, gT2), rsfMRI, EEG,
neuropsy, genotype, vitals etc.

31 M images
from 38K
subjects

1609 CT/MRI
anhnotated lesions



Computing power is constantly growing

#| Sunway TaihuLight, 93 PF
#3 Piz Daint, 19.6 PF

Radeon Vega (iMac Pro) || TF
PS4 |.8 TF
Intel Core i9 | TF

[top500.org]

Price is also going down constantly

<2 CHF/GFLOPS


http://top500.org

Predictive radiology

medical imaging

predictive radiology

= data + algorithms + computing power + interpretability



Applications of predictive radiology

Diagnosis
CAD: abnormality detection, lesion segmentation etc

direct Dx

direct DDx

subtyping

Prognosis

clinical score change

high-risk/low-risk stratification (care / trial enrichment)

Treatment planning

responder/non-responder



Methods and tools
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The linear support vector machine (SYM)

. i ® ,
Parameters to optimise: w A °* % e
(normal vector to the separating &' et T o
hyperplane), b (offset) T
| o T : X X XX y X
Find: W,b:argrrgln§\\W\\

With constraint: vn w,(xw +0b) > 1
Yields a discriminant function f(x,,) = x. W + b
And a decision function sgn(f(xm))

linSVM: a linear weighted
sum - W tells you how to

add / subtract features
(voxels) to get y from X. E




The convolutional neural network (CNN)
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uses learned image ‘filters’ ‘pooling’ reduces dimension

CNN: a non-linear method
which learns its own

features, needs “a lot” of
data and can work very well

[Krizhevsky et al, NIPS 2012]




Clinical applications



CAD for dementia: volumetry

controls

90%
median

10%

AD

[Adapted from slides by Alexis Roche, 201 6]

MorphoBox algorithm: [Schmitter et al, Neurolmage Clinical 2014]



CAD for cerebrovascular disorders: microbleed detection

Data: SWI

Classifier: 3DCNN

Subjects: 194 controls + 126 stroke (| 149 CMBs)
Performance: sens 92%, 3 FP/subject (state of the art)

al., IEEETMI, 2016]

[Dou et

truth detected



Automated multivariate dementia diagnosis

Features: modulated GM
Classifier: linSVM
Subjects: 20+14 HC, 20+14 AD

Performance: sens 97%, spec 94%

[Kloppel et al-, Brain, 2008]



Automated MR diagnosis in general

[Arbabshirani et al., Neurolmage 2017]



Schizophrenia treatment response prediction

al., Schiz. Bull, 2012]

zko et

Features: cortical thickness (GE |.5T, SPGR)

Subjects: 39 SZ (25R/14 NR @ 16 wks) + 45 HC
Treatment: antipsychotics (olanzapine /risperidone)

Responders have
thicker OCx

AN



From radiology to precision medicine



Radiology data is only part of the picture

(O
(O

(X]

[Dendrou et al., Nat. Rev. Neurol. 2016]



Imaging genomics for stratification

MET genotype: lower FA in TCx PCx OCx

[Rudie et al.,, Neuron, 2012]



Imaging genomics for gene discovery

Solution use brain imaging as intermediate

Problem finding genes for diseases using
phenotype

traditional techniques requires 1000s of subjects

10,000 patients

15,000,000 SNPs 1 diagnosis

Multiple comparisons: Low statistical power

[Richiardi,Altmann et al., Science, 2015]



Topic mapping and interpretation of radiology images

Imaging data: 216K 3D slices (1/4 MR, 3/4 CT)

Text data: 780K radiology reports

Performance:
image — topic (60): 66% (top-1), 95% (top-5)
image — disease (77): 71% (top-1), 88% (top-5)

example topic: “MRI of brain tumor” automated image interpretation

input

output

[Shin et al., JMLR, 2016]



Challenges



Challenges

T infrastructure

Move computation to data - how to standardise (SPHN)

Hippocampal atrophy rates in 1000 random resamplings of 40 scanners

Annotated data still small

Especially ICD-10 subcategories

How to use multi-site data ?
Most theory is built for |ID data N

Atphyt[/py r]

How to decide between sensmwty and specmuty'

Cost of false positive / false negatives differs widely across
diseases



Conclusions

We can leverage large imaging datasets and computing power
to improve healthcare: hospitals are sitting on a goldmine.

Methods are getting better very rapidly: semi- and fully-
automated tools will empower radiologists.

Integrating imaging with -omics will lead to vastly improved
understanding of disease: radiology is central to precision medicine.
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Quantlmage - PET/CT Radiomics Web Service

A simple web service for extracting quantitative imaging features from DICOM RT regions in 3D

Contact: adrien.depeursinge@hevs.ch

radiomics.hevs.ch N

f Region-of-Interest (click her
1. Set-up the
parameters

1. Customize the output fields and parame

re for details)

Intensity-based features (click here for detail

Texture-based features (click here for details)

3D GLCMs @

2. Upload batch of L o
PET-CT images e
2. Upload the CT/PET/DICOMRT ZIP file here ) "

 —p

Uploading test.zip. (completed)

Drop CT/PET/DICOMRT ZIP here to upload o select from your computer >
.

Status

Hes
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PERSONALIZED TUMOR PHENOTYPING

® Personalized medicine aims at enhancing the patient’s
quality of life and prognosis

R1 (G3)
® Jailored treatment and medical decisions based
on the molecular composition of diseased tissue R (4

® Current limitations [Gerlinger2012] P

e Molecular analysis of tissue composition
is invasive (biopsy), slow and costly

e Cannot capture molecular heterogeneity

ARRARARARRARAR ARAAAAARARA AR NN AN AN AR AR AR AR AR AR

0o IIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIII [T II R9

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII R

AR EEDNAAY DUDDDRRNAANDDEDDDRNNN RS
AR EEEND NANACERDDRNAAAAREEDDEE R

| NENRNRRANRRNNNRNANERANER AN  NNEDNNEENANERNAEDNANEEN R2
AR RN NAEEEANEENEEENEEENAERAEEEE R

G Hes
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FEDERALE D: LAUSANNE Management & Tourism

ANKRD26




PERSONALIZED TUMOR PHENOTYPING

® Huge potential for computerized medical image analysis

® [Explore tumor heterogenelty in existing diagnostic images

® (Cancer ecosystem is composed of micro-habitats [Gatenby2013]

® Relates to cancer subtype, patient survival, response to treatment

® [he density, metabolism, and structure of tumor tissue observed
in PET and CT images reflects their nature [Leijenaar2015]

® [.g., active cancer cells, angiogenesis, necrosis [Aerts2014]

® PET and CT axial views of non-small cell lung cancer:




PERSONALIZED TUMOR PHENOTYPING

® Radiomics: iImage-based personalized phenotyping [Kumar2012]
® Use image analysis to predict disease outcome

® Surrogate slow, costly and invasive molecular analysis

-+ malignant, nonresponder

malignant, responder
»* benign

undefined

quant. feat. #2

“ .« pre-malignant

quant. feat. #1

® (Quantitative feature extraction

® |Intensity, shape, margin, texture Deep learning

® Statistical and predictive models

® Uni- and multi- variate



PERSONALIZED TUMOR PHENOTYPING

® Radiomics: Image-based personalized phenotyping [Kumar2012]
® Use image analysis to predict disease outcome
® Surrogate slow, costly and invasive molecular analysis

-+ malignant, nonresponder
malignant, responder
»* benign

undefined

quant. feat. #2

“ .« pre-malignant

quant. feat. #1

® Related work [Ganeshan2013, Ravanelli2013, Mattonen2014, Depeursinge2015, ... ]

x No separate analysis of nodule components: mixing micro-habitats

x Limited geometric specificity of current texture biomarkers
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INTENSITY VERSUS TEXTURE

Intensity features are based on statistics of voxel values

® Standardized Uptake Values (SUV) in PET
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INTENSITY VERSUS TEXTURE

® [ntensity features are based on statistics of voxel values

® Specific to PET [Orlhac2014]:

® SUVmax = mj&x([(k)) .
1 10
P Nnpins Z (k) n H

max MﬂSmaX
® S,.xisaspherical region of 1.2cm diameter centered at the position of SUV max

® Metabolic tumor volume (MTV): MTV = vol,oze; X Npg Ay A1

Al’3
® 10l,ore1 = Ax1AxoAz5 is the volume of one voxel in cm3 (ﬂ

® Total lesion glycolysis (TLG): TLG = SUV,eqn X MTV

M L Hes
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INTENSITY VERSUS TEXTURE

® [ntensity features are insensitive to tissue morphology

® [, and [g have identical intensity distributions
14

20

5 3
SuUv
® Jerms such as tumor “heterogeneity” [Kidd2008] Hes
are ambiguous in the context of imaging

10
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TEXTURE ANALYSIS

® [exture characterizes transitions between voxel values

® direction
I

ECOLE POLYTECHNIQUI School of
FEDERALE D: LAUSANNI Management & Tourism
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TEXTURE ANALYSIS

® [exture characterizes transitions between voxel values

® scale

Gyl

ECOLE POLYTECHNIQUI School of
FEDERALE D: LAUSANNI Management & Tourism
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RIOMEDICAL

TEXTURE OPERATORS | DEPEURSINGE2017] TEmnmmﬂ

® [exture characterizes transitions between voxel values

® A D-dimensional texture analysis approach is characterized by a set of
N local operators quantifying transitions at the position x

Go{fHxg) €eR, n=1,...,N with support G,=Gi,X - xXGpnp

RZ

/

I L

ECOLE POLYTECHNIQUE
FEDERALE D: LAUSANNE
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RIOMEDICAL

INVARIANCE OF TEXTURE OPERATORS [DereursinGE2017) e e

® Global / local, invariances / equivariance of the texture
operators to geometric transformations can be desirable

® [E.g., translation, rotation and scaling
cars inphgic ager collagen junctions in lung CT

i = Ll 3

Photographic image analysis Biomedical image analysis

translation global equivariance global equivariance

rotation Nno invariance local invariance

scale local invariance Nno invariance

15



RIOMEDICAL

TEXTURE AGGREGATION | DEPEURSINGE2017] TEmnmmﬂ

® [exture characterizes transitions between voxel values

® Operator's response maps h,(xg) = G.{f}(xg) must be aggregated over a
region of interest (ROI) to get a scalar texture measurement

4

x107
! Jl
0

® [E.g., provide estimates of features statistics

: Gz.,,-bxo,g

4 x10

2

2

h i fi H

(average)

I L

ECOLE POLYTECHNIQUE
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INTEGRATIVE AGGREGATION FUNCTIONS

Fy

M

Go

® Undesirable effets of averaging

® Example with operator: Laplacians of Gaussian (LoG)

{91, 92} applied to all image positions xy € Fi x Fy
f(fc) g1 () | hl(w 92(x) ho ()

#h Y
. Y
; 3 ¥
- - ' " h .
’ &
» "
i
. w
" al
"o

® Operators’ responses are averaged over M
The averaged responses
original image f(x) with feature space A
egions M.\, M. over the entire image
I does not correspond
{0 T to anything visually!

ﬁ /M ha())da
@\+

M2

® Feature covariances can be better for aggregation [Cirujeda2o16)
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COMMON RADIOMICS TEXTURE FEATURES [Dereursinge2017c]
® Texture at multiple image scales (varying 01,0Q3)
e Widely used (e.g., = TEXRAD (Ganeshan2012)) a8

® T[ranslation-equivariant, locally rotation-invariant, easily extendable to 3D

® | aplacian of Gaussian (LoG) filters

® QOperator: second-order derivative of a Gaussian

® Advantages

® Drawbacks o _________

e

® |[nsensitive to directional H-HH |”~’f~=i

texture patterns HHHHHHH x :’;:”’:’;:
T 19



COMMON RADIOMICS TEXTURE FEATURES [DereursinGE2017C]

® Gray level co-occurence matrices (GLCM)

Tumor
Contour
® Operator: counting co-occurrence of pixel values
low Lener high u
. ) gy energy
® \Widely used (e.g., [Fried2016], LIFEX)
AN
e 14 ‘¢ 7 Henergy — § p(laj)
l(\, 1)5 6|8 oo 1|0 ..
2| 3|(s|7|1 1] 0 nyo bJ
als|72(1|2] of o of ¢ 2 : - 2
8 s{1 E ol o oo MHcontrast — |Z o ]| p(/l’7 ]) 2
. 0| 0 1] ! ’Lj | ;1
9010 0) oo K ’ b
135(-D,0) a5’1-00) 0l 0 0] 2
Pizel of Interest _'% ofoc) _ B A H%s = s
darom ;
e Advantages
® Translation-equivariant, easily extendable to 3D ' “ “ “
O [ M O] M C] ] W] []
| H - | | = | | = | | =
® Drawbacks OO O OOoo oOoo Oooo
® Not locally rotation-invariant (unless averaged over directions), aaiamamEs mmmi
poor multi-scale characterization, EEEEEEEEEEE%E;,E;;EE;,
- - : - T
requires arbitrary gray-level reduction T l!’,iﬁﬂi’,l 50



COMMON RADIOMICS TEXTURE FEATURES [DereursinGE2017C]

® Deep convolutional neural networks (CNNS) [Andrearczyk2017]

s l= DL S
AR =k |
| ".‘Qi.?‘ﬁ
.\‘ .r.l’-:loU

tembhoB® il

® Advantages

® T[ranslation-equivariant, extremely versatile (learns operators)

® Drawbacks

® (ot locally rotation-invariant, requires huge amount of training data in 3D

21



COMMON RADIOMICS TEXTURE FEATURES [DereursinGE2017C]

® [ ocally-oriented 3D Riesz wavelets [Chenouard2012, Dicente2017b]

® Operator: directional filters behaving like local partial image derivatives

® E.g., second-order: % S 9 @ eg @
o > ” ’

82 82 82
ox? 0y? 0z2 dzxdy 0x0z 0yoz

® Suitable for exploring first- and higher-order transitions between voxel values

® Multi-scale (wavelets) scale 1 scale 2
smwe O ® ¢
ox dy 0z

® Finds the 3D direction maximizing local image derivatives

® Steerable

® (Combines directional sensitivity with local rotation-invariance

M L M G‘

ECOLE POLYTECHNIQUI
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RIOMEDICAL

|NTERPRETAT|ON OF GEOMETRY [DEPEURSINGE20178B] TE\TLRHWM

® Directionally-insensitive texture operators (e.g., locally
rotation-invariant GLCMs or LoGs) cannot distinguish
between the following patterns

Example 1 Example 2 Example 3

‘-Example 1 [ Example 2 Il Example 3‘
1

10 ————
100 ¢ 1
107 ¢ 3
102} E
10

6

* ‘6 ‘\ @Q koqﬁi\lé\gzt&o@\‘\o*\
‘</ <<, @ <<>‘
S @ o@ N @ @ @ @
‘2\ ‘&‘,
Qz

3D GLCMs 3D LoGs aligned 3D Riesz

Importance of directional sensitivity combined with

local rotation Invariance [Dicente2017, Depeursinge2017b] Hes

School of
[ ment & ToLns B



RIOMEDICAL

INTERPRETATION OF GEOMETRY [DereursinGE20178] =y

® |mportance of directional sensitivity combined with
local rotation invariance [Dicente2017, Depeursinge2017b]

aligned Riesz
GLCMs Riesz wavelets (N = 2) g wavelets (N = 2)

— g
| O
(p) ~ N\
© 5 8
": = ==
S < O
O |l =
> & ;/
BS]/ N,
O _ —3

I |z

X =

GLCM contrast

L / (g (f(x) m>)2dm = / (g (f(R z) m))zdm
(0,2) 5 (0,2) Gmax(m) 9
d=1 (Ay, =1,A, =0) M Jaa 1M Jag

24



OUTLINE

® Background - Radiomics

® Personalized tumor phenotyping in PET - CT

® Nethods

® |mage mining: intensity versus texture
® J[exture analysis: definition and qualitative review

® The Quantlmage platform

® Results
® Head and Neck cancer: importance of geometry

® | ung cancer: importance of aggregation

® (Conclusions and perspectives

G Hes

ECOLE POLYTECHNIQUE School ofa
FEDERALE Dz LAUSANNE Management & Tourism

25



QUANTIMAGE CLOUD PLATFORM [Dicente2017]

® [ree access, encrypted data transfer
Image alignment and normalization

® State-of-the-art 3D radiomics features

Hes

® [ntensity (incl. PET specific)

radiomics.hevs.ch

1. Set-up the
parameters

® 3D texture

® Part of the image biomarker
standardisation initiative (IBSI)

[Zwanenburg2017]
4 @ " Inserm y 2 *
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Quantimage - PET/CT Radiomics Web Service
A simple web service for extracting quantitative imaging features from DICOM RT regions in 3D

1. Customize the output fields and param

@ Distance-based features (click here for details)




Thu Nov @ 1115 PN Adrien Depeursinga

QUANTIMAGE CLOUD PLATFORM [Dicente2017]

Pzople Window Help -
Adrien

@ Chrome File Edit View History Bookmarks

B @  nNewizd

c 1:- Q

W Bookmarks aPAD Stanford Dynamlka C ePAD

& Quantimage - PCT/ 88 Default titie
_—_—— -

22 ePaD | web-basad & Welcome © Google e Crrome W2t Stora

School of B

Management & Tourism

M L
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HEAD AND NECK CANCER [DereursingE20178]

® \isual analysis of F-FDG PET images allows more accurate
staging than American Joint Committee on Cancer (AJCC)[v002013]

® (Quantitative analyses of metabolic intensity could predict Overall
Survival (OS) and Disease-Free Survival (DFS) [cCasteli2017]

® [he interleaved sub-tumoral regions of proliterating cancer
cells and necrosis results in metabolic heterogeneity

1. Use 3D texture analysis of PET images to quantity internal metabolism
morphology 7

2. Use it to further predict OS and DFS 7

3. Differences between texture analysis approaches 7

Gt

1NN
FIDERALE DL LALS




HEAD A\1D NECK CANCER | DEPEURSINGE20178B]

® 108 patients: 62 from Rennes and 46 from Lausanne

® PET >8 weeks before RT, no metastasis at diagnosis
® (Gross Tumor Volume (GTV) manually segmented on each PET/CT
® 6-months minimal follow-up (0s: 40 events, DFS: 47 events)

® J[exture features parameters optimized

® Cox LASSO regression model [simon2011] ko & JF

Importance of directional sensitivity combined
with local rotation invariance

0.75

® Sir:

0.7

» Riesz (27 features)
» GLCMs (11 features)

" LoGs (14 features)

0.5

0.6 |

C-index

0.55

0.5

30
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. UNG CANCER [CiRusEDA2016]

® 92 |lung adenocarcinoma from Stanford Hospital and Clinics

® (Gross Tumor Volume (GTV), Ground Glass Opacities (GGO)
and solid regions M contoured in CT in 3D

® DFS times available

® 12 months cutoff (23 recurrences versus 69 remissions)

months after SABR treatment | O recurrence |

1. Difference when using GTV, GGO or solid ROls
for aggregation”

2. Difference between average and covariance
for aggregation?




. UNG CANCER [CiRusEDA2016]

® 2nd-order aligned Riesz, 3 scales (18 features)

w e e W% S

® Support vector machines (SVM)

® Average versus covariance kernel

® 10-fold CV (5 repetitions)

AVERAGE-BASED SVMS COVARIANCE-BASED SVMS

sensitivity

specificity

sensitivity

specificity

GGO

77.65 + 0.14

68.97 £+ 0.07

87.38 £ 0.05

78.33 &+ 0.13

Solid

85.96 £+ 0.09

76.45 + 0.11

85.14 4+ 0.13

76.67 &+ 0.14

GTV

83.17 £ 0.15

70.24 & 0.17

87.62 £ 0.05

78.33 £ 0.13

Hes

School of
FEDERALE Dz LAUSANNI Management & Tourism

G\

ECOLE POLYTECHNIQUE

33



. UNG CANCER [CiRusEDA2016]

original image f(x) with
regions M, M, M.

feature space

4t
4 F

®

+
=+
M1

M2

AVERAGE-BASED SVMS COVARIANCE-BASED SVMS

sensitivity

specificity

sensitivity

specificity

GGO

77.65 + 0.14

68.97 £+ 0.07

87.38 £ 0.05

78.33 &+ 0.13

Solid

GTV

85.96 £+ 0.09

76.45 + 0.11

85.14 4+ 0.13

76.67 &+ 0.14

Importance of the feature aggregation function

to avoid mixing tumor habitats
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OUTLINE

® Background - Radiomics

® Personalized tumor phenotyping in PET - CT

® Nethods

® |mage mining: intensity versus texture
® J[exture analysis: definition and qualitative review

® The Quantimage platform

® Results
® Head and Neck cancer: importance of geometry

® | ung cancer: importance of aggregation

® (Conclusions and perspectives
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CONCLUSIONS & PERSPECTIVES

® [nternal tumor structure (CT) and metabolism (PET)
morphology could be modeled with 3D texture to predict
clinical outcomes

® OS, DFSin Head and Neck as well as Lung cancer

® |arge differences between texture analysis approaches

® |mportance directional sensitivity and local rotation invariance

® |mpact of the feature aggregation function

Hes

radiomics.hevs.ch

® Online tools available

® The Quantlmage platform for 3D PET/CT

® | imitations and perspectives oy “
( \ N 2. Upload the CT/PET/DICOMRT ZIP file here ‘

»
g
,

® \/alidation on large and independent cohorts

sssss

® Protocol and features standardization
36
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Does this person have COPD?
Where is the emphysema?

How large are the airways?

Case courtesy of A.Prof Frank Gaillard, Radiopaedia.org, rID: 8095



ase courtesy of Radswiki, Radiopaedia.org, riD: 11384



Learning curve










ase courtesy of Radswiki, Radiopaedia.org, riD: 11384



Dog(Cat)

Su, J., Vargas, D. V., & Kouichi, S. (2017). One pixel attack for fooling deep neural networks.
arXiv preprint arXiv:1710.08864.






Solution 1: Multiple instance learning

k1)
l




ase courtesy of Radswiki, Radiopaedia.org, riD: 11384



ase courtesy of Radswiki, Radiopaedia.org, riD: 11384



Supervised MIL

v



Dissimilarity-Based Multiple Instance Learning

What is different about the groups of cats on the front cover, from the groups on the
back cover? IF you can answer this question, you are probably also able to categorize
another, previously unseen to you, group of cats. This thesis is about different applica-
tions where similar puzzles may occur, and how some machine learning algorithms
approach such problems.

ISBN 978-94-6295-192-1
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Multiple Instance Learning
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Does this person have COPD?

Case courtesy of A.Prof Frank Gaillard, Radiopaedia.org, rID: 8095



Image = COPD or not (lung function), 50 ROIs Texture filters

!
N
- TIMM

Histograms




Classifier AUC X, a1 AUC A,

Simple logistic notsy ~ 50.0 50.0

Simple logistic avg 71.9 70.5

‘e _lika” Simple k-NN noisy 61.0 65.9

Search for "COPD-like” patch Simple k-NN avg 67.0 67.8
miSVM noisy 69.7 65.4

miSVM avg 74.5 71.7

MILBoost 55.8 61.4

Citation k£-NN 63.2 61.5

mean-inst SVM 74.0 74.2

Vs extremes SVM 70.8 68.6
BoW SVM 50.0 50.0

MILES 65.8 68.2

meanmin SVM 70.8 71.3

Classify subject directly meanmin k-NN 65.0 69.1
emd SVM 73.7 74.6

emd k£-NN 63.1 67.1

Cheplygina, V., Sorensen, L., Tax, D. M. J., Pedersen, J. H., Loog, M., & de Bruijne, M. (2014). Classification of COPD
with multiple instance learning. In International Conference on Pattern Recognition (pp. 1508-1513).



Where is the emphysema?

Case courtesy of A.Prof Frank Gaillard, Radiopaedia.org, rID: 8095
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Evaluate stability

Fraction of agreement on positives

04 05 03

1.0
0.4
0.2
0.2

0.4
1.0
0.2
0.4
0.5
0.4
0.1
0.3

0.2 0.2

0.3

0.2
0.1

02 04 05 04 0.1

m. .o

0.3

0.2 0.3 g

0.4

04
1.0

0.1
0.3

0.4
0.3
0.3

0.3
0.3
0.4

mUS 0.1 0.3 puim 0.5

03 03 04 05

02 04 04 04 0.1

1.0
0.3

Any patches always positive?

20

Number of instances
— [
(@] (W ]

|9}
T

Bag 157

O 1 2 3 4 5 6 7 8 9 10
Times classified as positive

Cheplygina, V., Sgrensen, L., Tax, D. M. J., de Bruijne, M., & Loog, M. (2015) Label Stability in Multiple Instance
Learning. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 539-546






Solution 2: Transfer learning

Not learning “from scratch”




« Use other labeled datasets

Dataset Subjects  Age GOLD Smoking  Scanner Resolution (mm)
(1/2/3/4) (c/f/n)

DLCST 300 + 59 150, 711  69/28/2/0 77/23/0 Philips 0.72x0.72x1 to
300 - 57 [49, 69] 74/26/0 16 rows Mx 8000  0.78x0.78x 1

COPDGenel 74 + 64 [45, 80]  21/18/19/16  17/57/0 Siemens 0.65x0.65x0.75
46 - 59 [45, 78] 23/20/3 Definition

COPDGene2 42 + 65 [45, 78]  9/13/7/13 12/30/0 Siemens 0.65x0.65x0.75
25 - 60 [47, 78] 9/11/5 Definition AS+

Frederikshavn 8 + 66 |48, 77] 1/3/3/1 1/7/0 Siemens 0.58x0.58 0.6
8 - 56 25, 73] 1/2/5 Definition Flash



...as training data

Source

v

A 4



... to find good features

KDE-i

D .0 688
=1}
Eoa 674 71.9
cz 669 75.0
) K]

Cheplygina, V., Pefia, I. P., Pedersen, J. H., Lynch, D. A., Sgrensen, L., & de Bruijne, M. (2017).
Transfer learning for multi-center classification of chronic obstructive pulmonary disease.
In Journal of Biomedical and Health Informatics, to appear



. even if task and/or modality different

Case courtesy of A.Prof Frank Galillard, Radiopaedia.org, rID: 51158



Which datasets to use? (Most similar? Most different?)

Case courtesy of A.Prof Frank Galillard, Radiopaedia.org, rID: 51158



Meta-learning: how to quantify similarity of data?

" ® ArtervVein
@  Microaneurysm
Joeo “ ® QMitosisNorm
®  Mitosis
J’ ® Tissue
® Vessel
:‘ a

Cheplygina, V., Moeskops, P., Veta, M., Bozorg, B. D., & Pluim, J. (2017). Exploring the similarity of medical
imaging classification problems. In Large-Scale Annotation of Biomedical Data and Expert Label
Synthesis (MICCAI LABELS) (pp. 59-66)



Solution 3: Crowdsourcing
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tvst DOI: 10.1167/tvst.5.5.6

The Accuracy and Reliability of Crowdsource Annotations of
Digital Retinal Images

Danny Mitry', Kris Zutis?, Baljean Dhillon®, Tunde Peto', Shabina Hayat®, Kay-Tee

Khaw>, James E. Morgan®, Wendy Moncur’, Emanuele Trucco?, and Paul J. Foster' for
the UK Biobank Eye and Vision Consortium

[EEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 35, NO. 5, MAY 2016 1313

AggNet: Deep Learning From Crowds for Mitosis
Detection 1n Breast Cancer Histology Images

Shadi Albarqouni*, Student Member, IEEE, Christoph Baur, Felix Achilles, Student Member, IEEL,

Vasileios Belagiannis, Student Member; IEEE, Stefanie Demirci, and Nassir Navab, Member; IEEE
Can Masses of Non-Experts Train
Highly Accurate Image Classifiers?

A Crowdsourcing Approach to
Instrument Segmentation in Laparoscopic Images

Lena Maier-Hein"*** Sven Mersmann', Daniel Kondermann?,
Sebastian Bodenstedt?, Alexandro Sanchez?, Christian Stock?,
Hannes Gotz Kenngott®, Mathias Eisenmann?, and Stefanie Speidel®



RESEARCH ARTICLE

Pigeons (Columba livia) as Trainable
Observers of Pathology and Radiology Breast
Cancer Images

Richard M. Levenson'*, Elizabeth A. Krupinski®, Victor M. Navarro®, Edward
A. Wasserman?*

Benign samples | | Malignant samples |




How large are the airways?

Case courtesy of A.Prof Frank Gaillard, Radiopaedia.org, rID: 8095



Welcome Veronikal! Save lives by annotating airways!

Save lives by annotating airways!

1. Click airway center to place ellipse - Adjust it, repeat with second ellipse V’

Help us find airways! We are researching how to detect lung diseases We want you to annotate BOTH the airway and the wall around it. You can
such as cystic fibrosis and COPD, and need help with measuring the do this by placing TWO ellipses at the center of the airway and adjusting
airways inside the lungs. You will be looking at 2D slices from a 3D image them. One ellipse should be inside the other, and they should not cross.

of the lunas If the slice crosses an airwav. vou should see a dark circle or z
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Cheplygina, V., Perez-Rovira, A., Kuo, W., Tiddens, H. A., & de Bruijne, M. (2016). Early Experiences with
Crowdsourcing Airway Annotations in Chest CT. In Large-Scale Annotation of Biomedical Data and Expert
Label Synthesis (MICCAI LABELS), pp. 209-218






i
R

K
1
A K ) a-r

J ...1,.. o
_...#u“t :W g
A -h _...

KX H.hl. __L.-" .L. -L Ir.._f y
.-}w-fa%-ﬂh”“.-“- h..m”—ﬁi-:h

.- Ko ..w“_.f_.___a....u
-.&b-r.F- .(.a—...._..rl )
T B
nf_f'i... o L...-
. LN LA
+m:r.-rrrr£..

2 g.ﬁ.f.
tk-: ._—._.r... i)

c._ hdd' 4L

- .
T

« e

(Y

PPt

ce learnin

-

[ = mdn

a

t

......

e ins
. Lie%.:-

$ ol b " o g aggn
.. -l . - -
N Ny - N oy ™ |
3 e )
" S B F
s -l &’ =
e A O e
Ty, e
-
1
a -

3

ng

in
Itiple
er

e

al

Thanks to:



Dissimilarity-Based Multiple Instance Learning

What is different about the groups of cats on the front cover, from the groups on the
back cover? IF you can answer this question, you are probably also able to categorize
another, previously unseen to you, group of cats. This thesis is about different applica-
tions where similar puzzles may occur, and how some machine learning algorithms
approach such problems.

ISBN 978-94-6295-192-1
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Introduction

Radiomics: exponential growth

Radiomics: ~430 publications (nov. 2017)

Total Publications

432

T T T T T
2013 2014 2015 2016 2017

Source:; web of science




= Introduction

History of radiomics

The terms “radiomics” and “radiogenomics” were already employed in 2010
to describe how imaging features can reflect gene expression:

B e e e e T e S ) vViiveie we v J -

single diffusion weighting. Although quantitative values of diffusion are not derived, the
data are nonetheless very amenable to pixelwise analysis of heterogeneity.

Anatomic Imaging and gene expression patterns:|Radiomics

Referring again to figure 1, the physiology and anatomy of organs and tumors is driven by
gene expression patterns which are a product of cellular genetics interfacing with the
microenvironment. Over the last few years, it has become clear that distinct sub-regions of
tumors, identifiable by MR imaging, have distinct gene expression patterns (31, 42-44).
This indicates that underlying molecular biology can affect the “anatome”. Recently, there
have been attempts to determine if quantitative analysis of the anatome can be used to infer

1duosnuel Jouiny vd-HIN

an underlying molecular gene expression pattern. This involves “radiomics” which is the
extraction of quantitative features from radiographic images. Relating these to gene

expression patterns using sophisticated bioinformatic approaches is sometimes termed

Clin Radiol. Author manuscript; available in PMC 2014 May 04.

Gillies et al. Page 5

“radiogenomics”. The central hypothesis of cancer radiomics is that tumor imaging features

Gillies, et al. The biology underlying molecular imaging in oncology: from

- genome to anatome and back again. Clin Radiol 2010



LoTim :
= Introduction

Radiomics: evolution or revolution?

Radiomics has become popular since 2012

Merely a new incarnation of computer-aided
diagnhosis (CAD) systems (exist since the 80’s)

Textural features (a large chunck of radiomics
features) exist since the 70’s and have been used in
medical imaging since the 90’s [1-3]

Numerous publications before 2012 could be
categorized as « radiomics studies »

L

©

L

= Naga, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern
==Recognit. 2009



= Introduction

Radiomics: evolution or revolution?

« What has changed?
* New artificial intelligence techniques
e.g. neural networks, deep learning
 Efficiency+cost of computing power
e.g. GPUs (graphical processing units)
e Improvements of imaging devices (hardware+software)
e.g. PSF modeling and ToF in PET
 Availability of data
e.g. images + clinical + histopathology + genetics/transcriptomic
* Evolving applications for multimodal medical imaging
e.g. therapy follow-up, treatment planning
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Rationale

h . . . |
o Macroscopic/microscopic heterogenity 1

« Tumours are heterogeneous entities [']
* Genetic, cellular, tissular

» Hypothesis: caracteristics in images (macro scale) reflect at least partly
caracteristics in smaller scales (including genetic) [

Histology  Biomarkers
AN\ R,

Genomics
HORNREE el
‘:;‘_\- ) ;_,‘

Morphology (CT)

=

Mixed dominance

1

Functional (PET)

1. Gerlinger, et al. Intratumor heterogeneity and branched evolution revealed by multiregion
sequencing. N Engl J Med. 2012

2. Segal, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging.
‘Nat Biotechnol. 2007



a9 Introduction

Early works (example)

Internal arteries

Image trait selection
Pre- geta 2

processing

138 traits

Image traits

Classification
program learning

Module network
procedure

Modules

- B

Texture heterogeneity

\ éﬂir';“\ A &
.~;-"\f _'.\

Image
traits

Annotations

Post-processing

Gene partition

Functional modules

Annotation
analysis

Graphic presentation

-.!. Validation in
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Segal, et al. Decoding global gene expression programs in liver

cancer by noninvasive imaging. Nat Biotechnol. 2007
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Segmentation: impact?
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Hatt, et al. Characterization of PET/CT images using texture analysis: the past, the present... any
[% H@@@[ﬁm future? Eur J Nucl Med Mol Imaging 2017
Hatt, et al. Robustness of intratumour "®F-FDG PET uptake heterogeneity quantification for therapy
Tresponse prediction in oesophageal carcinoma. Eur J Nucl Med Mol Imaqging 2013

m:mmmmm:ﬂ




Radiomics
Segmentation: impact?

| for radiomics?'

Sphericity

Sphericity

Volume (mm3)

Hatt, et al. Tumour functional sphericity from PET images: prognostic
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Radiomics
Segmentation: impact?

o Segmentation step: how critical for radiomics?.
(a) (b)

Hazard ratios = 2.25, 1.32, 2.97, p=0.0034

g
]

azard ratios = 1.56, 2.19, 3.41, p=0.0001
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Hatt, al. Tumour functional sphericity from PET images: prognostic value

in NSCLC and impact of delineation method. EJINMMI 2017 (in press)
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Radiomics
Challenges and issues: the volume/intensity confounding issue
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__Tixier, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images

|| predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 2011

Hatt, et al. Baseline "®F-FDG PET image-derived parameters for therapy response prediction in oesophageal
ancer. Eur J Nucl Med Mol Imaging 2011




Radiomics

Challenges and issues: the volume/intensity confounding issue
) |

Table 2 Correlations (Pearson coefficients) between parameters derived from FLAB delineations on noncorrected PET images. Significant
correlation are shown in bold

Parameter SUVihean MATV  Entropy Homogeneity Dissimilarity Intensity — Size-zone Zone High Area under
variability variability percentage mtensity the curve of
emphasis the cumulative

histogram
SUV mean 1.00 020 030 -0.10 —0.02 0.08 0.09 —0.40 0.40 —0.50
MATV 1.00  10.82 0.69 —0.77 0.97 —0.16 —0.70 —0.22 0.07
Entropy 1.00 0.60 —0.80 0.77 —0.25 —0.90 —0.08 —0.07
Homogeneity 1.00 —0.93 0.80 —0.36 —0.42 —0.67 0.59
Dissimilarity 1.00 —0.83 0.41 0.60 0.58 —0.45
Intensity variability 1.00 —0.25 —0.62 —0.41 0.28
Size-zone variability 1.00 0.24 0.43 —-0.32
Zone percentage 1.00 —0.18 0.32
High intensity emphasis 1.00 —-0.97
Area under the curve of 1.00

the cumulative
histogram

Uﬂ“ﬂu I . Hatt, et al. Robustness of intratumour "F-FDG PET uptake heterogeneity
v o guantification for therapy response prediction in oesophageal carcinoma. Eur J Nucl
‘Med Mol Imaging 2013
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Challenges and issues: the volume/intensity confounding issue

CONCLUSION

Each PET-imaged tumor 1s a single sampling of all radioactivities
that are physically and biologically permissible for that particular
scanner—tumor combination. Because image heterogeneity statistics
accrue manifestations of possibilities, it 1s the very nature of these
statistics to reflect small sample sizes. Thus, inclusion of small
tumor volumes necessarily biases tracer uptake heterogeneity stud-
ies toward statistically significant differences even when no differ-
ence in uptake exists. We have argued that this bias 1s lessened 1f all
ROIs included in comparative heterogeneity analyses are above
a minimum number of voxels. We have described a technique for
computing this number that, when applied to our specific 'SF-FDG
PET image data, yields a minimum comparison volume of 45 cm’.

Brooks, et al. The effect of small tumor volumes on studies of

Nintratumoral heterogeneity of tracer uptake. J Nucl Med 2014
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Challenges and issues: the volume/intensity confounding issue

Example Heterogeneity Statistic

We computed the local information entropy of a 2-dimensional
image as described by Haralick et al. (/3). In brief, the cooccurrence
matrix describes the probability p that a pixel of a shade i occurs next
to a pixel of shade j. This matrix can be computed for various direc-
tions, pixel separations, and bit depths. We computed the horizontal

and vertical cooccurrence matrices for the nearest pixel neighbors of
8-bit gray-scale images. From each of these matrices, the local entropy

255 255
h=1=% > Ip(i.j) Inp(ij) Eq. 1
j=103i=103

was computed for each direction and then root-mean-square—averaged

to obtain a single local entropy value. The limits on the summations
reflect the 40% clinical threshold within the 8-bit (0-255) color
scale.

- A single texture: entropyg, cum
- Calculated following one single workflow:
- Linear discretization into 152 bins

== - 2 GLCM matrices for 2 directions (vertical+horizontal) followed by averaging

‘m Brooks, et al. The effect of small tumor volumes on studies of

Intratumoral heterogeneity of tracer uptake. J Nucl Med 2014



¥ Radiomics <
Challenges and issues: the complexity of textural features

o Workflow complexity

PET image

« Let’'s compute some textural features!» Useful
> quantification

heterogeneity

Hatt, et al. Characterization of PET/CT images using texture analysis: the
past, the present... any future? Eur J Nucl Med Mol Imaging 2017

senm
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Challenges and issues: the complexity of textural features

Segmented 2. Interpolation Image with 3. Quantization Quantized
tumor volume | . 1 oihod cubic voxels & Method image
t U Nearest neighbors, B-Spline... U Uniform, equal, Max-Lloyd, fixed bin size...
1. Segmentation W Quantization value O Size of bin
% Overall analysis
U 2Dor3D
[ Segmentation tool (gradient, clustering...) 4. Texture matrices design
4////\5
O Including low/no U Excluding low/no % Co-occurrence matrices
uptake areas uptake areas [ Number of directions
R tructed U Voxels distance
econ? ructe W 1 matrix per direction + averaging / no averaging
PET image
Selected | Textural |, Texture
) - . : . matrices
features 6. Statistical analysis features 5. Parameters calculation
*. . .
** Machine learning % Implementation
O Features selection method O Actual formula used

Q Classifier
% Selection based on:
 Robustness, reproducibility, redundancy, clinical value w.r.t. clinical endpoint

Hatt, et al. Characterization of PET/CT images using texture analysis: the

- past, the present... any future? Eur J Nucl Med Mol Imaging 2017
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Challenges and issues: the volume/intensity confounding issue

Original

N=555 tumors

S cancer types " i
FDG PET images

32 16
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correlation with MATV

Absolute Spearman rank

64 32 16
Quantization value

Hatt, et al. ¥F-FDG PET uptake characterization through texture analysis:
investigating the complementary nature of heterogeneity and functional tumor
volume in a multi-cancer site patient cohort. J Nucl Med 2015
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Challenges and issues: the volume/intensity confounding issue

cancer
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Hatt, et al. ¥F-FDG PET uptake characterization through texture analysis:
investigating the complementary nature of heterogeneity and functional tumor
volume in a multi-cancer site patient cohort. J Nucl Med 2015
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Challenges and issues: the volume/intensity confounding issue

Cancer model
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Challenges and issues: the volume/intensity confounding issue

Training | Validation

Radiomics i | ]
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Aerts, et al. Decoding tumour phenotype by noninvasive imaging
_using a quantitative radiomics approach. Nat Commun. 2014
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Challenges and issues: the volume/intensity confounding issue

4-features signature:
intensity, shape, textural, textural in the wavelet domain
energy, compactness, grey-level non-uniformity (GLNU), GLNU high-low-high subban

d Kaplan—Meier radiomics signature Kaplan—Meier radiomics signaftura
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Aerts, et al. Decoding tumour phenotype by noninvasive imaging

using a quantitative radiomics approach. Nat Commun. 2014
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Challenges and issues: the volume/intensity confounding issue

4-features signature: |=
intensity, shape, textural, textural in the wavelet domain
energy, compactness, grey-level non-uniformity (GLNU), GLNU high-low-high subband

Supplemental table (C-index) TNM- Volume-

Dataset TNM Volume Radiomics Radiomics Radiomics
Lung2 0.60 0.63 0.65 0.64 0.65
H&MN1 0.69 0.68 0.69 0.70 0.69
H&N2 0.66 0.65 0.69 0.69 0.68

Rank Spearman correlations (N=300 head and neck cancer patients):

=| energy: 0.62, compactness: 0.80, GLNU: 0.99, GLNU_HLH: 0.94
18 a - D

== Aerts, et al. Decoding tumour phenotype by noninvasive imaging

_using a quantitative radiomics approach. Nat Commun. 2014
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Challenges and issues: dependency on reconstruction

o Dependency on reconstruction: PET

Post-filter
Image # Acq. Mode Grid-Size Recon. Alg Iter. number width (mm) Legend
1 2D 128X128 OSEM 2 3 2D-128-OSEM2-3mm
2 2D 128Xx128 OSEM 2 5 2D-128-OSEM2-5mm
3 2D 128X128 OSEM 4 5 2D-128-OSEM4-5mm
4 2D 256X256 OSEM 2 3 2D-256-OSEM2-3mm
5 2D 256X256 OSEM 2 5 2D-256-OSEM2-5mm
6 3D 128X128 ITER 2 3 3D-128-ITER2-3mm
7 3D 128x128 ITER 2 6 3D-128-ITER2-6mm
8 3D 128X128 ITER - 6 3D-128-ITER4-6mm
9 3D 256X256 ITER 2 3 3D-256-ITER2-3mm
10 3D 256X256 ITER 2 6 3D-256-ITER2-6mm
Acg. Mode = acquisition mode; Recon. Alg = reconstruction algorithm; Iter = iteration.

1

] Gavalis, et al. Variability of textural features in FDG PET images due to different acquisition modes
I]HHHD U 7] and reconstruction parameters. Acta Oncol. 2010
® Yan, et al. Impact of Image Reconstruction Settings on Texture Features in 18F-FDG PET. J Nucl
* Med 2015
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Challenges and issues: dependency on reconstruction

D
>  pDependge 0 oCqO 0

B OSEM+PSF

§

C OSEM+TOF D OSEM+PSE+TOF

J

Gavalis, et al. Variability of textural features in FDG PET images due to different acquisition modes

[Hl == and reconstruction parameters. Acta Oncol. 2010
® Yan, et al. Impact of Image Reconstruction Settings on Texture Features in 18F-FDG PET. J Nucl

Med 2015
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Challenges and issues: dependency on reconstruction

o Dependency on reconstruction: PET

200 First-order features: 21-22: Maximal correlation coefficient
] 1: Mean 23: Maximal probability
150 2: Median 24: Diagonal moment
) 3:Variance 25: Dissimilarity
4: Coefficient of variance 26: Difference energy
1001 5: Skewness 27: Inertia
] 6: Kurtosis 28: Inverse difference moment
50 7: Energy 29: Sum energy
9 | 8: Entropy 30: Cluster shade
- Second-order features: 31: Cluster prominence
] 0 - 9: Homogeneity
T {2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 10: Contrast-GLCM
o _50 | 11: Correlation
12: Sum of squares
| 14: Sum average
—-100 15: Sum variance
_ 16: Sum entropy
_150 - First and Second Order Features 17: Entropy-GLCM

18: Difference variance
7 19: Difference entropy
20: Information measure of correlation

Multicentric data !

Gavalis, et al. Variability of textural features in FDG PET images due to different acquisition modes

and reconstruction parameters. Acta Oncol. 2010
Yan, et al. Impact of Image Reconstruction Settings on Texture Features in 18F-FDG PET. J Nucl
Med 2015
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Challenges and issues: dependency on reconstruction

o Dependency on reconstruction: CT

CT Scanner KVp mAs Scan Type Pitch Rotation time (Sec) Reconstruction Kernel Detector Configuration (mm)
GE Discovery STE (GE1) 120 250% Helical 0.984 1.0 Standard Det. Coverage = 40
GE Lightspeed 32 pro (GE2) 120 250* Helical 0.984 1.0 Standard Det. Coverage = 40
Philips Big Bore (P1) 120 250 Helical 1.024 1.0 Standard (B) 16 x 0.75
Philips Brilliance 64 (P2) 120 250 Helical 1.024 1.0 Standard (B) 64 x 0.625
Siemens Definition AS (S1) 120 250 Helical 1.0 1.0 13112 64 x 0.625
Siemens Sensation 64 (S2) 120 250 Helical 1.0 1.0 B3If 64 x 0.625
Siemens Sensation 40 (S3) 120 250 Helical 1.0 1.0 B3If 40 x 0.625
Siemens Sensation 16 (S4) 120 250 Helical 1.0 1.0 B3If 16 x 0.75
(a) 100
A A Original
A v Resampled
80{ . 1000{ o
A v
A“AAA 9>) o
ES Al
3 601 2 100{ T vitay
O -
s v
o~ 40 A A
AAvy T2 4 6 8 10
v“ﬂA o Feature index
204 Alay v
v - v ovvvV A% AMARRAL,,  Tyoe
Voo v Vg vgv wv v_ AAAKXXYY,.
o . . oy v SoRetsemsmmmenonn 00
1" 20 30 40 50 60 70 80

Feature Index

Shafig-Ul-Hassan, et al. Intrinsic dependencies of CT radiomic features on

voxel size and number of gray levels. Med Phys. 2017
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Challenges and issues: the complexity of textural features

o Dependency on pre-processing quantization E

« Quantization/discretization is required to build
texture matrices
ié,mtmmm,dm i, K=

Linear transform? Fixed width bins2 Histogram equalization®

Ir(p) =1+E [’(p)#] Ig(p) =1+ (N — 1) = hic(p)
1. Tixier, et al. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in FDG PET. J Nucl Med 2012
Instituts NGO
‘a . | 'éﬁéﬁwgﬂ}il. The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor

Original

)= e

max Imin

te&wﬁgﬂaﬂnalysis. Acta Oncol 2013
3. Haraliek et &l Téxtural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics 1973
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Challenges and issues: the complexity of textural features

o Dependency on pre-processing quantization

19 o Quantizationg 15 © Quantizationg
1? 7] rs=-0.83, p<0.0001 14 rs=-0.55, p<0.0001
16 ¥ Quantizationy, 13 ¥ Quantization,,

rs=0.17, p=0.12 rs=-0.28, p=0.01

Linear transform into 64 binsg
Quantizationg

Dissimilarity
Dissimilarity
1

Fixed width bins
S SUV, 10 HU)
Quantization,

o Quantizationg
rs=-0.78, p<0.0001

¥ Quantizationy,
rs=0.15, p=0.2

Dissimilarity

Dissimilarity

I I 1 I I
200 250 300 350 400

Maximum intensity (HU)

T
150

Desseroit, et al. Reliability of PET/CT shape and heterogeneity features in functional

and morphological components of Non-Small Cell Lung Cancer tumors: a
repeatability analysis in a prospective multi-center cohort. J Nucl Med 2017
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Challenges and issues: lack of standardisation

o Lack of standardisation

¢ Most papers do not provide enough details
» Difficult/impossible to reproduce the results
» Describe all choices and implementation details in appendix

« Some studies rely on available software (black boxes) that may
not be properly validated (or at least that do not give the same
results as other existing codes/software)

» Authors may not know exactly how the features they use are
actually implemented.

¢ — Meta-analysis impossible (entropy in paper 1 may not be the
same entropy as in paper 2 !)
¢ Sharing data and methods

Hatt, et al. Characterization of PET/CT images using texture analysis: the past, the present... any

future? Eur J Nucl Med Mol Imaging 2017
. Vallieres, et al. Radiomics: Responsible Research For Faster Clinical Translation. J Nucl Med 2017
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Challenges and issues: nomenclature

o Nomenclature

Textural Parameters of Tumor Heterogeneity in 'SF-FDG
PET/CT for Therapy Response Assessment and Prognosis in
Patrenits—with Locally Advanced Rectal Cancer

Ralph A. Bundschuh!—3, Julia Dinges!, Larissa Neumann', Martin Seyfried!, Norbert Zsotér?, Laszlo Papp®.
Robert Rosenberg®, Karen Becker®, Sabrina T. Astner’, Martin Henninger®, Ken Herrmann?, Sibylle 1. Ziegler',
Markus Schwaiger!, and Markus Essler!-?

!Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universitdt Miinchen, Munich, Germany,
*Klinik und Poliklinik fiir Nuklearmedizin, Universititsklinikum Wiirzburg, Wuerzburg, Germany; *Klinik und Poliklinik fiir
Nuklearmedizin, Universitdtsklinikum Bonn, Bonn, Germany; *Mediso Medical Imaging Systems Lid., Budapest, Hungary;
>Chirurgische Klinik, Kantonsspital Baden, Baden, Switzerland; °Institut fiir Pathologie, Klinikum rechts der Isar der Technischen
Universitét Miinchen, Munich, Germany, “Klinik und Poliklinik fiir Radioonkolgie und Strahlentherapie, Klinikum rechts der

Isar der Technischen Universitit Miinchen, Munich, Germany; and ®Institut fiir Rontgendiagnostik, Klinikum rechts der Isar der
Technischen Universitdt Miinchen, Munich, Germany

B
|

i
Bundschuh, et al. Textural Parameters of Tumor Heterogeneity in "®*F-FDG PET/CT for
Therapy Response Assessment and Prognosis in Patients with Locally Advanced
Rectal Cancer. J Nucl Med. 2014

Instituts|
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V
Challenges and issues: nomenclature

o Nomenclature

Parameter AUC 95% confidence interval
SUV yax 0.52 0.32-0.71
Skewness 0.55 0.33-0.75
Kurtosis 0.61 0.39-0.81
SUVhean 0.68 0.48-0.85
Diameter 0.68 0.48-0.85
COV 0.73 0.53-0.88
Volume 0.75 0.55-0.90
TLG 0.79 0.59-0.92

1st order features # textural features !

Bundschuh, et al. Textural Parameters of Tumor Heterogeneity in "®*F-FDG PET/CT for
Therapy Response Assessment and Prognosis in Patients with Locally Advanced

- Rectal Cancer. J Nucl Med. 2014
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Challenges and issues: lack of standardization

o

* USA

* Germany

* The Netherlands
* France

* Canada

* United Kingdom
* Italy

» Switzerland

Image Biomarker

standardization of image biomarkers. htt

Standardisation

Imaging biomarkers standardisation initiative
« 18 research groups fom 8 countries:

Initiative.
JlarXi

/a

Participants

Study leader: Alex Zwanenburg
Cardiff University

Philip Whybra, Emiliano Spezi

Dana Farber Cancer Institute and
Brigham and Women's Hospital,
Harvard University

Andriy Fedorov, Hugo Aerts

Gemelli ART, Universita Cattolica del
Sacro Cuore

Jacopo Lenkowicz, Luca Boldrini, Nicola
Dinapoli, Vincenzo Valentini

German Cancer Research Center
(DKFZ)

Michael Gitz, Nils Gahiert, Fabian
isensee, Klaus H. Maier-Hein

INSERM Brest, University of Brest
Marie-Chariotte Desseroit, Taman
Upadhaya, Mathieu Hatt

Leiden University Medical Center
Flaris H.P. van Velden

MAASTRO clinic, Maastricht University
Ralph TH. Lejjenaar, Philippe Lambin
McGill University

Martin Valliéres, Issam EI Naga
Memorial Sloan Kettering Cancer
Center

Aditya Apte

Moffitt Cancer Center

Mahmoud A Abdalah, Robert Gillies
OncoRay - National Center for

Radiation Research in Oncology and
NCT Dresden

Alex Zwanenburg, Stefan Leger, Esther
Troost, Christian Richter, Steffen Lock
The Netherlands Cancer Institute (NKI)
Joost van Griethuysen, Guong Viet Dinh,
Uulke van der Heide
Universitatsklinikum Tubingen,
Eberhard Karls University Tiibingen
Jairo Socarras Fernandez, Daniela
Thorwarth

University Hospital Ziirich, University of
Zurich

Marta Bogowicz, Stephanie Tanadini-Lang,
Matthias Guckenberger

University of Bergen

Are Losnegard

University of California, San Francisco
Olivier Morin

University of Groningen, University
Medical Center Groningen

Lisanne V. van Dijk, Jorn Beukinga, Nanna
M. Sijtsema, Roel J.H.M. Steenbakkers
Ronald Boellaard

Multicentre initiative
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Radiomics
Challenges and issues: lack of standardization

™

Participants < [m:nﬂay
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Digital phantom. Blue voxels lie outside of Standardisation progress. Height indicates the number of features per family. LI Local intensity; Universitatsklinikum Tabingen, Jpp—
the region of interest IH: intensity histogram; [VH: infensity-volume histogram; CM: co-eccurrence matrix; RLM: run Eberhard Karls University Tibingen A e
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Challenges and issues: statistical analysis

. R n
o Inapproriate statistical analyses L
Table 1. Statistical characteristics of the selected studies divided in three categories: A) Studies with multiple hypotheses testing only, B) studies
employing both multiple hypothesis testing and the optimum cut-off approach and C) studies with multiple hypothesis testing, with or without the
optimum cut-off approach, but with validation analysis.
Category Study Multivariate analysis Optimum Type |l error Validation cross correlation |Sample  Hypotheses
included volume cut-off adjustment dataset reported size tested
A Willaime [19] | Not applicable No/Mean No No Yes 12 68
El Naga [31] | NI* Not clear No No No 14/9 19
Tixier [33] NI Not clear No No Yes 4 54
Yip [41] No No/Median | Yes* No No 36 90
B Miles [30] No Yes No No No 48 10
Goh [32] No Yes No No No 39 24
Cook [29] No Yes No No Yes 53 30
Ganeshan [28]] No Yes No No Yes 21 15
Ganeshan [34]] No Yes No No No 54 8
Ng [36] No Yes No No Yes 55 25
Zhang [40] Yes Yes No No No 72 40
Cheng [39] Yes Yes No No Yes 70 59%
C Vaidya [35] Yes No No LoocVvT No 27 102
Win [37] No Yes No Yes No 66 12
Ravanelli [38] | No No/Median No LOOCV No 53 16
* No information provided
*For multiple hypotheses tested

TLeave one out cross validation
¥ Number is a conservative approximation due to the difficulty establishing the exact number of hypotheses tested

oS || 1) Chalkidou, et al. False Discovery Rates in PET and CT Studies with Texture
O

_Features: A Systematic Review. PLoS One. 2015
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Challenges and issues: how to use machine learning?

o Machine learning
« Choosing a classifier/feature selection method?

Feature
Classification Selection
method Classification method method
acronym name acronym Feature selection method name
Nnet Neural network RELF Relief
DT Decision Tree FSCR Fisher score
BST Boosting GINI Gini index
BY Bayesian CHSQ Chi-square score
BAG Bagging TMI Joint mutual information
RE Random Forset CIEE Conditional in_fqnmx feature
extraction
Multi adaptive regressi
MARS uit adapiive regression DISR Double input symmetric relevance
splines ’
SVM Support vector machines MIM Mutual information maximization
DA Discriminant analysis CMIM Conditional r_ulmt_uallmformatmn
‘ maximization
Neirest neighbour ICAP Interaction capping
Generalized linear models TSCR T-test score
Partial least squares and L. A .
A Minimum redundancy maximum
prinicipal componenet MREMER relevance
regression -
_ _ MIES Mutual mfo:'r}:_anon feature
selection
WLCX Wilcoxon

Parmar,

et al.

Machine Learning methods for

Radiomic Biomarkers. Sci Rep. 2015

Quantitative



E Radiomics

Challenges and issues: how to use machine learning?

o Machine learning
« Choosing a classifier/feature selection method?

Exparimental factomns

iegh ez Parmar, et al. Machine Learning methods for Quantitative
Radiomic Biomarkers. Sci Rep. 2015




E Radiomics

Challenges and issues: how to use machine learning?

o Machine learning
« Choosing a classifier/feature selection method?

Stability vs Predictive perfformance
Feature selachion methods Classification methods
11,66
054 4 ]
.Gj_ -'i'_\_‘.
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m i T i ru - T
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Parmar, et al. Machine Learning methods for Quantitative

_Radiomic Biomarkers. Sci Rep. 2015
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Radiomics

Challenges and issues: potential of deep learning?

- ¥

ential Tor aeep lea 0 approache
8 onal Neural Netwa ecent evo 0
eural netwa
RELU RELU| RELU RELU| RELU RELU
CONV CONV CONV EC

v

100¢Nvl lcciNvl

v

;

[l [ 1 1B [Fo—-] 1 |
. — ~| I =
& =18l
s s pre— e — I
& = \ 4 ﬁ = =
- —
prrer——r e Py — P
- =
E% il
S b — <
- =1Hl=
- S pr— f— - s S
e = = B -] B
- = | = | =] -
! —] — =
Ar‘ - | e |~
——
- — e I e el B
= b 1 = =
| = —
o P— Pt e B p—
= =l =l
- = ] e— o f— ,'7.7] e
&=l | B3

iy

AN ENENNE

LT T T LT ]

-l JINSERm

Institutinaticnall
'de'|a'sa

Lecun, et al. Deep Learning. Nature. 2015
Suzuki. Overview of deep learning in
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Challenges and issues: potential of deep learning?

o Machine learning
« Potential for deep learning approaches?

¢« Convolutional Neural Networks = recent evolution
of neural networks

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

e Lecun, et al. Deep Learning. Nature. 2015
' Suzuki. Overview of deep learning in medical imaging. Radiol Phys
Technol. 2017
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Challenges and issues: potential of deep learning?

o Deep learning app

lications

SCIENTIFIC REPg}RTS

i: 22 September 2016
I: 18 July 2017

‘Bladder Cancer Treatment
Response Assessment in CT using
'Radiomics with Deep-Learning

Kenny H. Cha?, Lubomir Hadjiiski*, Heang-Ping Chan?, Alon Z. Weizer?, Ajjai Alva®, Richard H.
1

: Cohan?, Elaine M. Caoili!, Chintana Paramagul' & Ravi K. Samala

Journal of Medical Imaging 3(3), 034501 (Jul-Sep 2016)

Digital mammographic tumor classification using
transfer learning from deep convolutional neural
networks

Benjamin Q. Huynh, Hui Li, and Maryellen L. Giger*
University of Chicago, Department of Radiology, 5841 South Maryland Avenue, Chicago, lllincis 60637, United States

SCIENTIFIC REP{K;}RTS

SCIENTIFIC REPg}RTS

A Deep Learning-Based Radiomics
'Model for Prediction of Survival in
_Glioblastoma Multiforme

Jiangwei Lao?, Yinsheng Chen?, Zhi-Cheng Li(®?, Qihua Li?, Ji Zhang?, Jing Liv* &

i: 24 May 2017

He 11 August 2017 ¢ Guangtao Zhai(®!

Deep Learning based Radiomics
(DLR) and its usage in noninvasive
'IDH1 prediction for low grade
‘glioma

Zeju Lit, Yuanyuan Wang(®'?, Jinhua Yu'?, Yi Guo'2, Wei Cao®

14 December 2016
25 May 2017
online: 14 July 2017
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Challenges and issues: potential of deep learning?

o Dee

D learning applications

(

4[ ROI selection ]—

ROI
pre-processing

[

J

Pre-trained
VGG19

]

Pre-trained

VGG19

-
CNN features —
fully-connected

layer
S Yy

)

CNN features —
fully-connected
layer

)

ROC analysis
(benign vs.
malignant)

Antropova, et al. A deep feature fusion methodology for breast cancer diagnosis

|

}
SVM classifier SVM classifier
output output

]

]

LMedicaI image J
Lesion
segmentation
Standard
radiomics
)
CNN features — Hand-crafted
max-pool features
layers
SVM classifierw SVM classifier
output J output
-—

Classifier
fusion

ROC analysis ROC analysis ROC analysis
(benign vs. (benign vs. (benign vs.
malignant) malignant) malignant)

J |

A
ROC analysis
(benign vs.
malignant)

1

demonstrated on three imaging modality datasets. Med Phys 2017
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Challenges and issues: potential of deep learning?

o Deep learning applications

Full field digital mamography (FFDM) Ultrasound (US) DCE-MRI

" CNN-based vs Conventional CADx (FFDM) - CNN-based vs Conventional CADx (US) CNN-based vs Conventional CADx (DCE-MRI)

o
- - e — -
(b) e o Sd =3
- e -
. % |
-

«© _| @ ]

(=] o
o Ty Ty
a . o o
E % = =
c O c |~ -]
S o 7 <* AUC: 0.862 S AUC: 0.902 S o [ AUC: 0.892
§ N AUC: 0.814 § AUC: 0.872 § Y AUC: 0.866
o e AUC: 0.791 o AUC: 0.842 ';E, , AUC: 0.864
e iy 3 3 < L
& o & & S
E E E
- = =

~ = Fusion Classifier Fusion Classifier & Fusion Classifier

o o

* CNN-based Classifier « CNN-based Classifier « « « CNN-based Classifier
== = Conventional CADx Classifier == = Conventional CADx Classifier == = Conventional CADx Classifier
= = =]
o T T T T 1 = T T T T 1 =3l | T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False-Positive Fraction (FPF) False-Positive Fraction (FPF) False—-Positive Fraction (FPF)

Antropova, et al. A deep feature fusion methodology for breast cancer diagnosis
demonstrated on three imaging modality datasets. Med Phys 2017
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Challenges and issues: potential of deep learning?

pplications

o Deep learning a
 m—
I

Lesion Type
© Benign
® Malignant

put from Conventional CADx Features '

o
N
()]

- \Out
L ]

0.75
Output from CNN-extracted Features __

=

Antropova, et al. A deep feature fusion methodology for breast cancer diagnosis
demonstrated on three imaging modality datasets. Med Phys 2017
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Conclusions

o Radiomics
* Very dynamic field of research
* Numerous challenges and methodological issues
* Lack of standardization (workflow, features)
¢ Difficult statistical validation

o Potential solutions, perspectives
 Larger, prospective, multicentric studies
* Use robust machine learning methods (deep learning?)
 Standardization of radiomics (ongoing)

* Responsible research (share methods & data)
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DEVELOPING PREDICTIVE
MARKERS FOR PAIN AND
ANALGESIA
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Motivation: addressing translational challenges for FMRI

FMRI has provided extensive understanding of pain related neural
dynamics associated with an enormous range of factors:
Analgesics
Placebo/nocebo
Sensitization
Attention
Reward responsiveness
Negative Emotions
Relative Relief CAL
etc.. el e o T i

Khizgos deanss b\riwe W N 1I"arCas2d ooTYaRIn Cn the ozntT
tom homeschoe [Seangel

Yet, clinical translation of this understanding remains an ambition.

Meta-analyses
Improved analyses
New types of study!?
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An fMRI-Based Neurologic Signature of Physical Pain

The NEW ENGLAND JOURNAL of MEDICINE

‘ ORIGINAL ARTICLE |

An fMRI-Based Neurologic Signature
of Physical Pain

Tor D. Wager, Ph.D., Lauren Y. Atlas, Ph.D., Martin A. Lindquist, Ph.D.,
Mathieu Roy, Ph.D., Choong-Wan Woo, M.A., and Ethan Kross, Ph.D.

METHODS

In four studies involving a total of 114 participants, we developed an fMRI-based
measure that predicts pain intensity at the level of the individual person. In study 1,
we used machine-learning analyses to identify a pattern of fMRI activity across
brain regions — a neurologic signature — that was associated with heat-induced
pain. The pattern included the thalamus, the posterior and anterior insulae, the
secondary somatosensory cortex, the anterior cingulate cortex, the periaqueductal
gray matter, and other regions. In study 2, we tested the sensitivity and specificity
of the signature to pain versus warmth in a new sample. In study 3, we assessed
specificity relative to social pain, which activates many of the same brain regions
as physical pain. In study 4, we assessed the responsiveness of the measure to the
analgesic agent remifentanil.



An fMRI-Based Neurologic Signature of Physical Pain

Table 1. Pain-Classification Performance, According to Study.™ ‘
Performance on
Study Discrimination between Pain and No Painf Effect Size} PVYalue Forced-Choice Test
Signature-Response Positive Predictive
Threshald Sensitivity Specificity Value AUC  Discriminability
percent (957 Cl) percent (95% CI)
Study 1
Painful vs. warm€| 1.40 95 (36-100) 95 (36-100) 95 (35-100) 0.95 2,69 <0.001 100 (100-100)
Pain vs. pain anticipation 0.36 100 (100-100) 99 (96100} 95 (86-100) 0.99 3.69 <0.001 100 (100-100)
Pain vs. pain recall 0.54 95 (85-100) 94 (89-98) 79 (64-92) 0.96 235 <0.001 100 (100-100)
Study 2
Painful vs. wam|*= 1.32 03 (84-100) 93 (84-100} 93 (84-100) 0.92 1.54 <0.001 100 (100-100)
Painful vs. near pain threshaold{+ 2.50 88 (77-97) 85 (72-95) 85 (73-96) 0.88 1.74 <0.001 100 (100-100)
High vs. low warmth 1.00 56 (36-75) 100 (100-100) 100 (100-100) 0.79 131 0.001 100 (100-100)
Study 3
Painful vs. wam 14053 85 (76-94) 78 (67-89) 30 (68-239) 0.86 1.64 <0.001 93 (86-98)
Painful vs. rejecter 14057 85 (76-94) 73 (61-34) 76 (65-86) 0.83 1.33 <0.001 95 (33-100)
Rejecter vs, friend 140173 27 (16 38) 83 (79-95) 69 (50-88) 0.57 031 0.22 56 (43 69)
Study 4
Painful vs. warm, before drug treatment 1404 90 (79-100) 81 (65-95) 83 (67-95) 0.89 161 <0.001 90 (79-100)
Painful vs. warm, during drug treatment 1.61 86 (73-96) 62 (42-80) 69 (52-24) 0.74 1.01 0.003 76 (61-90)
Painful befare vs. during drug treatment 1.61 86 (72-96) 62 (43-79) 69 (54-83) 0.74 1.01 0.003 76 (60-92)

*  Study 1l included 12 trials each in painful and warm conditions. Study 2 induded a mean (+SD) of 24+13 trials for pain and 36+9 Lrials for warmth, depending on the ratings. Study 3

included 8 trials each in painful and warm conditions. Study 4 included 3 trials for pain and 3 for warmth in the before-drug-treatment condition and in the condition with peak drug

concentration. Cl denoles confidence interval.

The tradeoff between sensitivity and specificity at different thresholds was assessed by means of receiver-operating-cha racteristic (ROC) plots; the signature-response threshold that

rninimized overall classification errors is reported here.

For the area under the ROC curve, chance is 0.5. Discriminability is a measure of effect size under a gaussian model. Performance varied across studies, according to the number of

Lrials averaged to form the condition maps.

f, Forthe two-choice (forced-choice) discrimination test, the classification threshold for the difference between paired observations is 0. The sensitivity, specificity, and positive predictive
value are the same and are equal Lo the decision accuracy.

9 Painful conditions were defined as temperatures greater than 44.5°C and as ratings of more than an average of 5.80 points on a visual-analogue scale (YAS), and warm conditions as
Lemperatures of less than 44.5°C and ratings of less than 3.34 points on the VAS.

| Study 2 was conducted with the use of a scanner with a different field strength (3 T), so the threshold was reestimated.

#% Parlicipants made judgments of painful versus nonpainful conditions for each Lrial.

11 Participants rated pain or warmth intensity on a continuous VAS, with scores ranging from 0 to 99 points for warmth and from 100 to 200 points for pain. Pain was defined as a score
of more than 125 points, near the pain threshold as a score of 75 to 125 paints, high warmth as a score of 50 to 100 points, and low warmth as a score of 0 to 50 points.

11 The threshold derived from study 1 was applied.

- -+



An fMRI-Based Neurologic Signature of Physical Pain

A Pain-Predictive Signature Pattern

Precuneus

Negative Predictive Weights Positive Predictive Weights
N
285 295 1.354
7 d rd
B Cross-validated Prediction of Pain C Pain vs, Other Affective Events D Discrimination Performance
34 34 Physica' heat iy ",‘_5:;.:71'_:.;?'-- e
f l‘ ."

g ‘ § 2 0.5 :
3_ H % _a: l':.‘
= & e 1= § 0.6 :
— 3] w
< 5 5 .
'8 4 g 0 v D44
S . 8o Pzin recall —— Pain vs. warmith
E : o 0.2 — lfain vs. pain anticipation

2-% —— Pain vs. pain recall

1 e o .
047' T T T T ] -2 T F"F antu.np;han 1 0.0 T T T T T ]
0 2 3 4 S 6 7 38 I 2 3 4 C 02 04 06 0% 10
Pain Report Stimulus Intensity Level (1 - Specificity)




What is the value of human FMRI in CNS drug development?

[ Conventional program ]
P=0.5

Launch /
P=0.2 $200m ‘{ Commercialisation J
$20m Phase IIb, lIl, registration J—
T _ Phase lla
proof of concept

Risk-adjusted value Risk-adjusted retumn
$127m on investment 4.4

@ Preston & Wise, 2010, Drug Discovery Today



What is the value of human FMRI in CNS drug development?

[ Conventional program ]
P=0.5

Launch/
P=0.2 $200m ~[ Commercialisation ]
$20m Phase lIb, lll, registration J—
T _ Phase Ila
proof of concept

Risk-adjusted value Risk-adjusted retumn

$127m on investment 4.4
L FMRI program J
=0.5
Launch /
P=0.5 $200m B Commercialisation]
P=0.4r $20m Phase llIb, I, registration ]— .
$2m Phase lla | Eail
proof of concept

Phaca | [ . g
Fail

Risk-adjusted value Risk-adjusted return
$132m on investment 5.6

Drug Discovery Today
Preston & Wise, 2010, Drug Discovery Today




Decision making: Predictive imaging

Go

Pause/Stop

Decision-making protocol ideally suited to multivariate prediction
methods

But, what criteria/features do we use for Go / No Go decision?
How do we validate?



Three pillars of drug survival

Drug Discovery Today *Volume 17, Numbers 9/10+=May 2012 PERSPECTIVE

Can the flow of medicines be
improved? Fundamental
pharmacokinetic and pharmacological
principles toward improving Phase |I
survival

Paul Morgan', Piet H. Van Der Graaf'*, pietvandergraaf@pfizercom, John Arrowsmith?,
Doug E. Feltner”, Kira S. Drummaond®, Cralg D. Wegner® and Steve D.A. Street”

In an cffort to uncover systematic learnings that can be applied to improve compound survival, an
analysis was performed on data from Phasc II decisions for 44 programs at Pfizer. 1t was found that not
only were the majority of failures caused by lack of efficacy but also that, in a large number of cases
(43%), it was not possible to conclude whether the mechanism had been tested adequately. A key finding
was that an integrated understanding of the fundamental pharmacokinetic/pharmacodynamic
principles of exposure at the site of action, target binding and expression of functional pharmacological
activity (termed together as the ‘three Pillars of survival’) all determine the likelihood of candidate
survival in Phase II trials and improve the chance of progression to Phase III.

Morgan et al 2013
Drug Discovery Today




Three pillars of drug survival

Target site exposure Binding to the target Expression of
functional activation

Meta-analysis of 44 Phase olar 1 andl 2 oilar 123
.. . illar 1 an illar 1,2,
2A Clinical trials !
Total =12 =14
¢ £ tasted mechanism e All 14 tested mechaniam
* 2 phase lll starts * 12 tested mechanism &

achieved positive FOC
= 8§ advanced to phase Il

Case study 2: CCR5

Exposure
confidence
None or partial Pillars Pillar2 and 3
* 12 failed to lest mechanism * 5 tested mechanism
and all were phase Il RIPs * No phase Ill starts

Morgan et al 2013

Drug Discovery Today
Case study 1: D3
-

Pharmacology confdence




Three pillars of drug survival: FMRI surrogates

Target site exposure Binding to the target Expression of
functional activation

Pharmacodynamic effect

Morgan et al 2013
Drug Discovery Today

X pfizer,




Three pillars of drug survival: FMRI surrogates

Target site exposure Binding to the target Expression of
functional activation

Pharmacodynamic effect

Pharmacodynamic effect:
- does the drug alter brain responses in any way?
- can the drug condition be discriminated from placebo?

Morgan et al 2013
Drug Discovery Today

X pfizer,




Three pillars of drug survival: FMRI surrogates

Target site exposure Binding to the target Expression of
functional activation

Evidence of efficacy

Evidence of efficacy: does the modulation suggest efficacious action?
e.g. reductions in established pain regions?
- but will this enhance screening beyond pain ratings?

- changes common to existing efficacious compounds
- could identify additional features predictive of analgesic
action, not directly tied to pain relief
- potentially identify signature effects earlier
- identify signature effects in non-responders
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Learning to identify CNS drug action
and efficacy using multistudy fMRI
data

Eugene P. Dufft’, William Vennart?, Richard G. Wise®, Matthew A. Howard*,
Richard E. Harris®, Michael Lee!, Karolina Wartolowska!, Vishvarani
Wanigasekera’, Frederick J. Wilson?, Mark Whitlock?, Irene Tracey!, Mark W.
Woolrich'® and Stephen M. Smith!

Science
Translational

Medicine

Vol 7. Issue 274
11 February 2015

Table of Contents

ARTIAI EF AL S

- Aim to learn to identify analgesic effects on pain responses from multistudy data

- Test our ability to identify these effects in new studies



FMRI CNS Drug Assessment Protocol

A. Quality assurance B. Pharmacodynamic effect C. Evidence for clinical efficacy

Qualified Go. Go.

Drug has an effect on Preceed with cinical trials.
arain. but daes nat match Accelerate programme if
past studies, Asscss spatal evidence is partcularly
affects, other avidence sTrong.

Pause.

Reassess experimental
protocol and analysis
strategy. Result is not
informative of drug effects.

No. No. No. Yes.,

Problem with Litds indicaucn Easeline responses Imaging sugges:s
protocol or thar drug has an and modeling appear datdrug is a
analysis pipeline identifiable effect apprepriate. promising

Chn responses candidate

Can the drug modulation be
identificd based ona

validared sigrature af clinical
efficacy?

Can basic responses be Can drug effect te reliably
detected and do they match ident fed based on other
past studies? Yes subjects in study? Yes

Baseline responses DCrug has a reliable
and modeling effect on brain
appear OK raspanses




Implementing our decision procedures

Pharmacodynamic effect

Train Classifi
rain Classifier

Cross validated
discrimination accuracy

Placebo ﬁ

Test
Drug

Signature of Clinical efficacy

Placebo ]
Test - Cross validated
org discrimination accuracy

Known drug |

Placebo
Known drug 2

Placebo
Known drug 3 New Stl.ldy
. . Placebo
\. . ‘. . ' . Known drug 4 .}Preduct
Past study database Train Classifier MVPA AnalySiS
- Whole-brain data, ICA-based features
Multi-study signature of efficacy. Train MVPA algorithm to * Forced-choice linear SVM

identify brain responses associated with established . Subject-wise drug VS placebo training
efficacious drugs, using a set of existing studies studies.

Determine whether algorithm successfully identifies the and prediCtion
presence of the test compound.



FMRI CNS Drug Assessment Protocol

A. Quality assurance

No.

Problem with

protocol

or

analysis pipeline

Can basic responses be
detected and do they match
past studies?

Study A
Study B
Study C

Study D
Study E

Past study database

000000
00000
0000
000000

000000

Yes.

Baseline responses
and modeling
appear OK

B. Pharmacodynamic effect

No.

Little indication
that drug has an
identifiable effect
on responses

Can drug effect be reliably
identified based on other
subjects in study? Yes

Drug has a reliable
effect on brain
responses.

Train Classifie
ral " Predict

<« |(0000000)

New Study

Placebo

Test

Compare

Stimulus validity assessment. Test for differences
between responses of test study and responses
elicited in validated existing studies.

Drug

New Study

Cross-validated signature of pharmacodynamic effect.
Train MVPA algorithm to discriminate drug from
control session maps. Test on held-out subjects (i.e.
leave-one-subject-out cross validation).

C. Evidence for clinical efficacy

Qualified Go.

Drug has an effect on
brain, but does not match
past studies. Assess spatial
effects, other evidence

No. Yes.
Baseline responses Imaging suggests
and modeling appear that drug is a

appropriate. promising
candidate.

Can the drug modulation be
identified based on a
validated signature of clinical
efficacy?

Points represent
imaging data from
one scanning session

Placebo

Known drug |

000000
000000

New study

Train Classifier

Placebo
Known drug 2

Placebo

Known drug 3

Placebo

Known drug 4

Past study database

Multi-study signature of efficacy. Train MVPA algorithm to
identify brain responses associated with established
efficacious drugs, using a set of existing studies studies.
Determine whether algorithm successfully identifies the
presence of the test compound.



FMRI CNS Drug Assessment Protocol

A. Quality assurance

Pause.

Reassess experimental
protocol and analysis
strategy. Result is not
informative of drug effects.

No.

Problem with
protocol or
analysis pipeline

Can basic responses be
detected and do they match
past studies? Yes

Baseline responses
and modeling
appear OK

B. Pharmacodynamic effect

No.

Little indication
that drug has an
identifiable effect
on responses

Can drug effect be reliably
identified based on other
subjects in study? Yes

Drug has a reliable
effect on brain
responses.

C. Evidence for clinical efficacy

Qualified Go. Go.

Drug has an effect on Proceed with clinical trials.
brain, but does not match Accelerate programme if
past studies. Assess spatial evidence is particularly
effects, other evidence strong.

No. Yes.
Baseline responses Imaging suggests
and modeling appear that drug is a

appropriate. promising
candidate.

Can the drug modulation be
identified based on a

validated signature of clinical
efficacy?

Go/No-Go decision rules must be predefined, and will be dependent on:
* strength of effects in existing efficacious compounds
* current confidence in the compound
* demand for a successful compound
* expected subsequent cost of development
* expected economics of a successful compound



Analgesic Datasets

Drug (reference/ Patient n . . n Pain
Study clinicaltrials.gov ID) condition subjects SCAIer e Stimull trials score
Analgesic drug study assessments
a Gabapentin (9) Healthy 12 3T Varian 1800 mg oral Punctate to hypearalgesic 20 N/R
(taken 2 hours skin
prior)
b Pragabalin (24) Fibromyalgia 23 3T GE 225 mg/day oral Thumb squeeze 6 Yes
(7 dzys daily
dosing)
C Pragabalin (25) PTNP 16 3T TIM 150 mg oral BID Brush-evoked zllodynia 15 No
(NCT00610155) Trio (7 days daily
dosing)
d Tramadol (25) PTNP 16 3T TIM 200 mg oral BID Brush-evoked zllodynia 15 Yes
(NCT00610155) Trio (7 days daily
dosing)
e Remifentanil (6, 18) Healthy 22 3T Varian 2 ng/ml BPC i.v. Punctate and thermal 10 Yes
f Remifentanil (21) Healthy 12 3T Varian 1.5 ng/ml BPC i.v. Laser 50 No
g THC (23) Healthy 14 3T Varlan 15 mg oral Puncrate to hyperalgesic 20 Yes
(taken 2 hours skin
prior)
h Naproxen (22) Osteoarthritis 19 3T GE 220 mg oral Key turn 15 Yes

HDx (taken 1 hour prior)



Control Datasets

Study clglrizglt(:g;r;zscl/[)) c:::;i‘;?(:n subjf'ects SCANRex o Stimull tri:Is spca:)l:‘e
Control study assessments

i 2nd placebo (study b) Fibromyalgia 23 3T GE N/A Thumb squezeze 6 No

j 2nd placedo (study e) Healthy 22 3T Varian N/A Punctate and thermal 10 No

k 2nd placebo (study f) Healthy 12 3T Varian N/A Laser 50 No

| Remifentanil (study f) Healthy 12 3T Varian 1.5 ng/ml BPC Flash 50 N/A
infusion

m Remifentanil (study f) Healthy 12 3T GE 1.5 ng/ml BPC Brief tone 50 N/A
infusion

n Naproxen (study h) Osteoarthritis 19 3T GE 220 mg (1 hour) Visual stimulus 15 N/A

HDx



Learning to identify CNS drug action and efficacy using multistudy fMRI data

Event related studies (Analgesics)

Pregb (PTNP) Remi (L)

Tram (PTNP) Remi (T/P)

Placebo

nown dru
Placebo . . . . . . Placebo
Known drug 2 . . . . . . gers:g

Testing datasets

Pregb (Fibro) Gabap

THC

Decision rules

(QC) Greater than 5% of pain regions showing lower
responses than database

Significant prediction accuracy

Go (Q) Non-significant drug placebo discrimination (p<0.15)

Non-significant prediction accuracy

| A I L.

A O | KR
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Results

Scudy A

Study B

sssss c

P
Study E New Study

ccccccc

Past study database

QA

Study Test compound Area of reduced
response (%)

Analgesic drug study assessments
Gabapentin
Pregabalin

A . IBMA of pain responses across all studies

Pregabalin
Tramadol
Remifentanil

Remifentanil
THC
Naproxen

o S T QO N o N

Control study assessments

Placebo (study b)
j Placebo (study e)

~

Baseline (study f)

Visual stimulus (study f)
Auditory stimulus (study f)

S |3

Visual stimulus (study h)



Results

;:::S P
Study E New Study
Past study database f| <" New Study
QA Pharmacodynamic effect
Study Test compound Area of reduced
Accuracy (range) P

response (%)
Analgesic drug study assessments

Gabapentin

Pregabalin
Pregabalin
Tramadol
Remifentanil
Remifentanil
THC
Naproxen

o9 T QO N o

Control study assessments

Placebo (study b)
Placebo (study e)

Baseline (study f)

J— = S

Visual stimulus (study f)

Auditory stimulus (study f)

S |3

Visual stimulus (study h) 73% (55-87) 0.009



Results

Swudy A
Study B
Study E New Study

Compare

Past study database

New Study

QA Pharmacodynamic effect Clinical efficacy

Study Test compound Area of reduced

response (%) Accuracy (range) P  Accuracy (range) P

Analgesic drug study assessments

a Gabapentin 0 | 92%(70-100) |0.0002 = 83%(60-94) | 0.003

b Pregabalin D 61% (44-76)  0.105 |

c Pregabalin 0 | B1%(61-92) | 0.002 | 69%(42-79)  0.038

d Tran g Mean drug effects _ 4 il "2'3

e Remif | g % ) 1% .

f Remif {‘ “.'1) -6

g Tl L

h Napt hannt
Control study

i Placebo

j Placebo

k Baseline

I Visual stimt |

m Auditory stimulus (study f) _—- 58% (36-78)  0.194 |

n Visual stimulus (study h) [  73% (55-87) 0.008 | 47%(30-65) 0.5




Study

Past study database

New Study Past study database

QA Pharmacodynamic effect Clinical efficacy

Test compound Area of reduced p , Decision
response (%) Accuracy (range) Accuracy (range)

Analgesic drug study assessments

o9 T QO N o

Ju— - — —

S |3

Gabapentin
Pregabalin 61% (44-76)
Pregabalin
Tramadol

Remifentanil

Remifentanil

THC

Naproxen

Control study assessments
Placebo (study b)
Placebo (study e)
Baseline (study f)

Visual stimulus (study f)

58% (36-78)

Duff et al, Learning to identify CNS drug action and efficacy using multistudy fMRI data. STM 2015

Auditory stimulus (study f)

Visual stimulus (study h)



Gabapentin

Pregabalin ()

Pregabalin (I

Tramadol

Remifentanil (1)

Remifentanil (II)

THC

Naproxen

Between study prediction

'.‘

.00

0.75

0.50



Conclusions

Proof-of-concept that FMRI can play a role in clinical trials, and similar predictive
clinical applications.

It is possible to quantitatively integrate existing data into new studies, increasing the
robustness and range of inferences.

Standardised but evolving protocols can be important for clinical imaging and many
other applications.

Obtaining (and publishing) datasets to combine remains very challenging, particuarly
commercial/clinical data.

Immediate focus should be on protocols combining datasets within laboratories.

Machine learning approaches are an effective way to boost sensitivity in these
contexts



Refinements to prediction

Accelerate

- Expand MVPA outputs

Likely disease applications

Go

Phase 1 FMRI Adijust dose
A Pause/Stop
NEW STUDY
[oooooq
(oc0000

- Alternate approaches to generating signatures of efficacy that do not
require existing efficacious compounds

 Resting state



Further and ongoing work

Biomarker for Antidepressant Action
Resting-state pharmacologic studies
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Primer — Genetic variation

DNAdoublehelix

it it EPIGENETIC MECHANISMS HEALTH ENDPOINTS
DNA Trans§r|pt|on Transynphon R MEeTH B e ae e sl
start site Intron  Exon  stop site oot i Cr N ; BRI SV
, A \ + Environmental chemicals + Mental disorders
* Drugs/Pharmaceuticals + Diabotes
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Histone modification

Translation
The binding of epigenetic factors to histone “talls"
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product
(amino acid chain)
Posttranslational modification
a
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Primer — Genes & brain diseases




Primer — Genes & brain diseases

Huntingtin gene
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Primer — Common genetic variation and the Psychiatric Genomic Consortium

Effect size

Effect size :
large

Effect size :
moderate

Effect size :
small

* common diseases
* common variants
« small effect size

allele

1
0.001 | = | 0005| T s |005 I sy |frequency

Significance of association (-log,, #)

304

27+

24

~
1
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Primer — Intermediate phenotypes

IQ adult
1Q child
Reading disability

Personality
Schizophrenia
Major depression
Autism
Hyperactivity

0

Heritability is the
proportion of
phenotypic variation
associated with
genetic variation (as
opposed to shared
and non-shared
environmental
variation). Heritability
of schizophrenia is
estimated around
80% (McGuffin, Riley
et al., 2001).

No genetic variation so far
investigated explains more
than a minimal proportion of
risk for schizophrenia (Hirsch
and Weinberger, 2003).

How can we study the
influence of multiple genetic
variants on the biology of
schizophrenia?

BRAIN
NETWORKS

INTERMEDIATE PHENOTYPES

Any neurobiological measures
associated with the genetic risk
variants of a disease, e.g.,
biochemical,
neurophysiological,
neuroanatomical,
neuropsychological (Bearden,
2006).

Intermediate phenotypes are
heritable but independent of
illness status, therefore can
also be studied in healthy
siblings of patients.

BEHAVIOR




Primer — Classic imaging genetics

BDNF Effect on Episodic Memory

80
70
60
B
§ 50
Z 40
)
2 30
20 ®- PATIENTS
10 =&~ SIBLINGS
vallval val/met met/met &= CONTROLS
BDNF Genotype
C
Cohort 1 Cohort 2 « BDNF;
Genotype Group Val/val (8) Val/met (5) Val/val (12) Val/met (5) e Sj ngle exonic
(number of subjects) .
Age 8.8 (10.5) 8.8 (10.0) 288 (7.1) 22.8(9.9) SNP;
Gender M/F 53 5/0 75 n * Note the sample
Education years 16.6 (3.7) 16.5 (1.0) 15.8(2.1) 17(6.3) Sizes
Reading Comprehension 109.5 (6.0) 109.8 (4.3) 107.9 (5.3) 114.6 (6.9) ° C Ie ar mo Ie cu Ia r
IQ 112.8(5.4) 109 (7.1) 100.2 (13.2)® 115.6 (6.2)° .

— . . L function, but
Episodic Memory (Logical Memory II 73.9(18.4) 60.6 (25.0) 45.8 (26.3) 68.4 (29.5) L. ..
scores) limited clinical

2 back performance translation.
%Correct responses 73.5(28.0) 80.2 (17.0) 87.4(13.4) 91.1(13.1)
Reaction time millisec. 263.9 (103.6) 175.1(80.7) 100.7 (28.3) 1035 (30.8)

Egan et al., 2003 Cell




Background — many players in schizophrenia risk

U
®
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T
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‘Guilty alleles’ or ‘guilty genes’? Ripke stal., ol iatiE

A standard way to look at gene-trait associations is to search for risk alleles. Then, risk alleles are combined into
ensembles reflecting the additive genetic component of a heritable trait.

We still don’t know which genes are impacted by these variants — but we know the polygenic risk score is not related
with clinical outcome (Hettige et al., 2016 Schizophrenia Research; Wimberley et al., 2017 Schizophrenia Bulletin).



Background — dealing with complexity

The central nervous system is hierarchically organized, and we can use this
aspect of its organization to understand how it works.

a Molecular hierarchies Neurobiological hierarchies
Transcriptome Proteome Epigenome A @% Brain regions, cognition
) g\c/- mRNA @ Signalling or structural Open " = and behaviour
°°'_‘°tt_'° ——— IncRNA @ RNA binding g*;im;"na;t'ifg §
variation . -
ek O DNA binding marks 9 Microcircuits and
2 long-range circuits
A T PR Major cell types and
3 5 AV l cellular subtypes
G c 52
“ g Cellular
c G 8 @ subcompartments
Cc G
—————— :
T A A 13
SP -~ \\\
1Z~ ) L4
OSVZ - . I | 5
ISVZ — X L6
vVZ/
- ?;frrgﬁ:tl%?j Fetal brain development to adult ageing

Parikshak and Geschwind, 2014 Nature Rev Genetics



Background — gene expression = function

Idea

Gene expression may be
considered as a molecular trait and
can thus be predicted based on
genetic variants.

In turn, gene expression is key to
explain brain phenotypes.

Gene Expression Decomposition

Gamazon et al., 2015 Nature Genetics

Mechanisms

* Genetic variants may affect gene
expression by modulating the
affinity of DNA binding factors.

*We can identify key genetic
variants via brain post mortem
studies.

Richiardi et al., 2015 Science

10



Outline — functional translation of gene co-expression

Approach

Schizophrenia is associated with genet
Since the expression of individual gen
of gene sets, we hypothesized that the
be associated with schizophrenia phe

@ o

Translational genetics: DRD2 Insights from molecular profiling Outlook: schizophrenia genes

How do we translate genetic Co-expression networks afford Ongoing work on clinical
risk variants into biologically novel insights into how DRD2- predictions merging
plausible mechanisms of related genes are associated imaging & genetic data.
risk and clinical translation? with drug response.

a o

r—

11



Genetic variants translate gene expression into function

. _ S Translate knowledge derived from dead
Transm?lo@' slehis frem _ _ brains into models of living brains.
g‘i';;g‘;s' molecular profiling Senepens > we need a common language
available both post mortem and in vivo.

TRANSCRIPTOME CANDIDATE POLYGENIC CO- INTERMEDIATE
NETWORK EXPRESSION INDEX PHENOTYPE

,x~!.'

Preprocessing Identifying a genome- Co-eQTLs are Polygenic co-
post-mortem gene wide unsupervised detected and expression
expression data in network of genes to collapsed into indices are

the DLPFC of non- model gene-gene continuous indices associated with
psychiatric relationships. that approximate co- intermediate
individuals Then, we can select expression. phenotypes.

(Braincloud). gene sets of interest.

12



Gene of interest — schizophrenia, DRD2, and WM

« Twin and adoption studies established the strong ] genetic variance

Essen-Maller, 19411

heritability of schizophrenia; Kalman, 10463

——

Slater and Shields, 195321 ——

Kring|en' 1067 —————————
———

« Patients with schizophrenia show altered dopaminergic N
Tienari, 1975%

neurotransmission and benefit from antipsychotics Konder nd Rointe, 1083

Onstad etal, 10917

which target the D2 dopamine receptor; Kening, 1006 —_—

Franzek and Beckman, 1009%
Cannon et al, 1008%

Cardno etal, 1999°!

Al 5mdi1s

environmental variance
Essen-Moller, 19411¢
Kallmann, 19462

Slater and Shields, 19531

——
———————
Kringlen, 19672 ——
Fiecher et al, 1080% —(—
Tienari, 1975
Kendler and Robinette, 1083%  j—
Onstad etal, 19917 e————
KIANing, 10067  sem—
—
—

Franzek and Bech

Cannon et al, 1028%
Cardno etal, 199931

Al Studiss] m——
0 10 20 30 40 50 €0 70 80 90 100
Estimate, %

——— - 1
CTR BPD MDD SCZ CTR BPD MDD SCZ CTR B8PD MDD SCZ

Kaalund et al., 2013 Molecular Psychiatry Sullivan et al., 2003 Arch. Gen. Psychiatry



Gene of interest — schizophrenia, DRD2, and WM

[A] DLPFC 2BPy,

« Twin and adoption studies established the strong

heritability of schizophrenia;

[
(=]
1

« Patients with schizophrenia show altered dopaminergic

-
(=]
I

neurotransmission and benefit from antipsychotics

=]
1

Decrease in DLPFC BPyp, %

which target the D2 dopamine receptor;

-
(=]
n

|

[~

o
1

» Schizophrenia-specific functional brain alterations are

related with D2 binding in the DLPFC; T Sctopmrenia Heaty Conel

(n=20) (n=21)

[ B| Regression of DLPFC ABPyy

« Similar alterations are found in unaffected siblings =

genetic basis of schizophrenia brain phenotypes?

- [
o o o
n n n

Decrease in DLPFC BPyp, %

—
o
n

-0.1 0 0.1 0.2 03 0.4
Functional Magnetic Resonance Imaging Signal Change
(Task-Control), %

Callicott et al., 2003 Am. J. of Psychiatry Slifstein et al., 2015 JAMA Psychiatry



Co-expression prediction of DRDZ2 availability in DLPFC

Rank Marker Gene Gene Name MAF
1 rs2486064 CHIT1 Chitinase 1 0,22
Glycosylphosphatidylinositol
2 16902039 GRLDA Specific Phospholipase D1 0.23
3 rs851436 OSR1 Odd-Skipped Related 1 0,48
Processing Of Precursor 1,
4 rs9297283 POP1 Ribonuclease P/MRP Subunit 0,20

5 rs12940715 SDK2 sidekick cell adhesion molecule 2 0,12

DEAH (Asp-Glu-Ala-His) Box

6 rs1805453 DHX33 Polypeptide 33

0,34

N

rs11213916 BTG4 B-Cell Translocation Gene 4 0,30

(o0}

rs1037791 AGR2 Anterior Gradient 2 0,31

199 subjects (0-78 years, Braincloud)

23636 gene probes
D2L cluster included 85 genes

SNPs were significant at p <.005.

Pergola et al., 2017 Translational Psychiatry 15



Translational genetics — D’ expression Index

—+

T T T T T T
cT cc cT ™ cc cT

TT=0 CT =-0.07 CT=-0.19
Subject 2 Genetic Score = -0.087

We computed D’-values (y-axis) of each SNP genotype population (x-axis) with reference to
the major homozygous population.

Boxplots shows leave-one-out cross-validation of D’-values.

Genetic Score was defined as the mean of D’-values associated to subject’s genotypes.

A strength of this approach is that it does not assume a linear influence of allelic dosage.
It is an explicit modeling of additive genetics (no machine learning).
Pergola et al., 2016 Psychological Medicine
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Translation — Polygenic Co-expression Index

01
-

02 -~

03
04 093 92 01 00 01 02 03 04 05 05

04 03 02 01 00 01 02 03 04 05 08
PCI

The PClI is positively
correlated with gene co-
expression and thereby is
also positively correlated
with DRD2.

We replicated the correlation in an
indipendent microarray dataset
(BrainEAC, Trazbuni et al., 2011).

The replication was significant and its
strength increased with data quality
indexed by RIN.

Minimum RNA integrity

Pergola et al., 2017 Translational Psychiatry

17



The case of DRDZ2 — brain activity during n-back task

Voxel q (FDR) < .05, k = 6, masked for task activity

05

05

% signal change in cluster"A" T

001,

1 D, binding in the PFC
- 1 PFC BOLD during WM

| B| Regression of DLPFC ABPy,

N=124 1

304

204

104
05

N =244

04

Decrease in DLPFCBPy,, %

-104

% signal change in cluster “D”

05

-20-

-30

0.1 02 03 0.4
Functional Magnetic Resonance Imaging Signal Change
(Task-Control), %

1 predicted DRD2 expression 2> 1 PFC
BOLD during WM in three independent
N =29 SCZ samples of patients and controls.

Pergola et al., 2017 Translational Psychiatry
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The case of DRDZ2 — treatment response

T D2L - 1 treatment response

SECOND CLINICAL SAMPLE (Ned0)

Allelic Ratios

TREATMENT RESPONSE
TREATMENT RESPONSE

DRD2L DRD2S DRD2L DRD2S

Zhang et al., 2007 PNAS

FIRST CUNICAL SAWPLE (Ne47)

‘X

*®
=

-
S
TREATMENT RESPONSE
38 « 88 8 5 8 8

TREATMENT RESPONSE

g

n
=

P
=

w
=

PANSS total scores 0-36 days

% 1 predicted expression > 1 treatment response to
atypical antipsychotics in two independent samples
GG GT T AKTI A carriers of patients (total N=87).

DRD2 rs1076560

& IKTI GG
Blasi et al 2011 PNAS Pergola et al., 2017 Translational Psychiatry

These results show the biological validity of the PCI identified via co-expression networks




Brain activity during working memory performance

1617
141

. 124
Translational Insights from Outlook:

genetics: molecular
el profiling

1

schizophrenia 0.8 A

genes 06 -
: 0.4
0.2 4 i

BRAIN ° Gl Dose1 Dowz  Doses
DNA CELLS NETWORKS BEHAVIOR 10 nA 15nA 40 nA

°
]
©
E
2
c
©
@
=

firing rate difference
(PD - NPD) (arbitrary units)

Vijayraghavan et al., 2007 Nature Neuroscience

— High Span
- - Low Span

Arcsin Accuracy
BOLD responses in left BAS

Placebo  Bromocritpine Placebo  Bromocrilpine = ;x::
B 3 Back

Placebo Bromaocriptine GG GT

Load-dependent DLPFC activation is associated
with DRD2 rs1076560 genotype. Note that the
effect changes dramatically between loads.

Individuals with low WM capacity benefit from
treatment with D, agonists like bromocriptine.

Gibbs and D’Esposito, 2005 Psychopharmacology Gelao et al., 2014 Psychopharmacology




Bromocriptine response depends non-linearly on DRD2-PCI

» Discovery N = 50, Replication N = 50 (previous study)
» Discovery: double-blind, crossover, randomized, placebo controlled trial with Bromocriptine 1.25 mg
» DRD2-PCIl as linear & quadratic predictor of bromocriptine response

» Differential accuracy (3-2-back) during WM performance (Cassidy et al., 2016 Journal of
Neuroscience) to index individual WM capacity

» Differential PFC activation between loads as the corresponding neural substrate (3-2-back)

Discovery dataset

hd

-o— Placebo =-# Bromocriptine

il

e

R

:
s
i
3
g
£
:
&
H
3
3

-~ PLACEBO ~&- BROMOCRIPTINE

-4 T T T T T
02 <041 0.0 0.1 0.2 0.3
Polygenic Co-Expression Index

Replication dataset

3

»n
i

-50
-0.4 -0.3 -0.2 -0.1 0.0

Polygenic Co-Expression Index
Behavior: DRUG x PCI2 p =.045 4
BOLD: DRUG x PCE cluster-level FWE p < .05 5 “ o PoveenicCospessonince
Bootstrapped p < .05

R
'

BOLD signal from the pooled clusters (A.U.) w
>

Selvaggi, Pergola, et al., in revision
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Discussion part 1 & 2

» The PCI approximates DRD2 co-expression.

* When assessing individual WM capacity
and its neural correlates, there was a U-
shaped relationship between predicted DRD2
co-expression and brain/behavioral phenotypes.

* This  relationship was  reverted by
bromocriptine, such that only participants with
low WM capacity manifested a visible change.

» Critically, individuals at the two extremes of
the curve have opposite allelic patterns.
Rather than risk alleles, the ensemble of DRD2-
related genetic variation is associated with
drug response based on its relationship with
gene expression.

RELEVANCE

Gene co-expression networks
reveal novel genetic players
in the regulation of
dopaminergic transmission.

Allelic variation did not
evolve to support drug
response, but to sustain

molecular processes such as
gene expression.

Different alleles can predict
the same outcome when
weighted for a cardinal
principle of biological
organization such as gene
regulation.

22
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Imaging Genetics
Partial Least Squares (PLS)
Application to AD

Distributed PLS



Imaging Genetics



Genome-wide Association Study (GWAS)

« Single Nucleotide Polymorphisms (SNPs)
* ~ 1 million genetic markers measured
« Sample acquisition cheap (£50 per participant)

Patients k

Non-patients
S z
3. LT
ARY; - ==
# >3
Patient DNA Non-patient DNA
Compare
differences
to discover
SNPs associated

with diseases

Disease-specific SNPS Non-disease SNPS



Genome-wide Association Study (GWAS)

N
[y Bo+ Bux SNP + Y B + ¢
1=2

« Mass univariate testing
« P<5x10-8 is ‘genome-wide significant’



Why Imaging Genetics?

* Imaging genetics uses imaging phenotypes in
genetic studies

* Imaging phenotypes are ‘closer’ to the disorder
than diagnoses
— Often diagnoses are ‘mixed bags’
— Allows us to study how the disorder develops

normal A — AR

s Tau-mediated neuronal injury and dysfunction
s Brain structure

wes BIOMARKER MAGNITUDE ==3»-

Normal

=== CLINICAL DISEASE STAGE =»



Early Imaging Genetics Example in AD

 APOE-€e4 is a strong risk——

factor for AD

 Reiman et al. (1996)
studied glucose
metabolism

 APOE-e4 homozygotes
showed reduced meta-

bolism in typical AD
regions

Preclinical Evidence of Alzheimer's Disease in Persons
Homozygous for the €4 Allele for Apolipoprotein E




Imaging Genetics “Menu”

Candidate ROI Many ROls

LN
. <

Voxelwise

~

b L
r{}':t"‘"
- .

N, - W

Candidate SNP

[Filippini et al. 2009]
29,812 voxels
1 SNP

[Joyner et al. 2011]
4 ROls, 11 SNPs

Genome-wide Gene

RELE B+ NKFD1 #H
CLASRP 4 TRAPPCEA -
CLASEP 4B

CLASEF p—tta

TRAPPCEA §-f
TRAPPCEA §-f

H TRAPPCEA §-—
GEMINT =4 BLOC1S3 )

[Hilbar et al. 2011]
31,622 voxels
18,044 Genes

Genome-wide SNP

rs440446| rs483082|
rs877973| rsss4007|
rs769449 | rs43ssi1|
rs769450 | rs402204 |
rs429358 |
rs76945S| rsSii4|

[Stein et al. 2012]
1 ROI, 1.1 mio SNPs

[Potkin et al. 2009]
1 ROI, 317,503 SNPs

[Stein et al. 2010
31,622 voxels
448,293 SNPs




Partial Least Squares



Imaging Genetics — Multiple Outputs

« Multivariate methods work well, however ..
. genetics data and imaging data are both hlghly
multldlmensmnal (P, and P, >> N) nY

. multiple imaging modalities
* The ‘easy’ way out
— Mass univariate
* no machine learning, P, x P, tests
— P, (independent) multivariate analyses

— First identify patterns in one dataset (mainly imaging)
followed by GWAS/multivariate analysis




Principle Component Analysis (PCA)

 Common method to identify patterns in data...
or to reduce dimensionality

—

1. PCA for imaging data, PCA for genetics data

2. Find the latent ‘features’ that correlate
— PCAs are computed independently
— No information transfer between images and genetics




Methods for Multiple Outputs

Multi-Task Learning (or Multi-Response Learning)
— Instead of doing P, independent analyses
— Also regularize across different tasks (brain regions)

Parallel Independent Component Analysis (ICA)

Canonical Correlation Analysis (CCA)
— Close relative: reduced rank regression (RRR)

Partial Least Squares (PLS)



RRR <—> PLS <> CCA th

Multi-output predictions from neuroimaging:
assessing reduced-rank linear models

Mehdi Rahim, Bertrand Thirion, Ga&l Varoquaux
Parietal - Inria / CEA. Paris-Saclay University. France
mehdi.rahim@inria.fr

PRNI, 2017



Foundation of PLS d

 Two matched datasets X and Y, we aim to find a
projection u and v, such that

P, = X4’

have the maximal covariance

Related to CCA

— Not maximizing correlation but covariance

P, =Y¥

argmax cov(Py, Py )

U,V

% xx"




Foundation of PLS d

Related to CCA

— Not maximizing correlation but covariance

Two matched datasets X and Y, we aim to find a
projection u and v, such that
P, =Xi P,=Y%"
have the maximal covariance
argmax cov(Py, Py )
U,V
u and v provide weights for each original feature

Further projections identified iteratively
— Deflating X and Y and computing the next projection
— We get series of projections: U=[uy,...,uy], V=[V4,...,V\]




SVD version of PLS &

 Nowadays a popular used version of PLS is PLS-
SVD (singular value decomposition)

M — UAV/ Unitary matrix,

right singular vectors

Unitary matrix, left singular vectors Diagonal matrix, singular values

* Allows to compute U and V as
XY =C=UAV’

cross-covariance matrix

* Solves PLS in ‘one go’, but ...
... C is pretty large (P, x P,) feature x feature ||z

— 1 mio SNPs times 300k voxels - =




Memory efficient PLS-SVD

* ‘Rephrasing’ avoids computation of C _ |
Diagonal matrix,

(X/XY/Y) A_ — A_L eigenvalues

B = A (A/Y/YA)_§ Eigenvectors
V=YB U=X (Y’YBL—%) A— 3

 Allows working with covariance matrices for X and
Y of size NxN (subject x subject) “
... much more tractable!! | = |

o=

fﬂfl




PLS in imaging genetics for AD



in AD
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PLS applied: Cortical Thickness in AD

Genetics of cortical thickness in AD
* Loss of gray matter in AD

e Cortical thickness derived from structural
T1 weighted MRI scans

300,000 1,100,000

 ADNI database
— 300,000 mesh points
— 1.1 mio SNPs

— 1,192 subjects (HC, MCI, AD)
« 639 training (HC, AD)

@

1,192




PLS applied: Cortical Thickness in AD

~10° SNPs

~10° brain features

v= [ i

P .

Partial least squares max, , Cov(X-p, Y q)

PLS-SVD / \
PLS weights

relative importance

chromosome N




PLS stability with re-sampling

Random partitioning of the population

in non-overlapping groups (split-half) |®

\ /
Y ¥
N———— -
) k 4
PLS weights associated to individual SNPs PLS weights associated to individual SNPs PLS welghts assoclated to brain meshes PLS weights assoclated to brain meshes
Top 10%
(absolute
LINLITT o Jiif | 1l 1y
. absolute value
‘ ‘ * + ( )
Partitioning of chromosomes (bin size: 10k ) Partitioning of chromosomes (bin size: 10k )
v
\V' .

b) Identification of relevant bins

Identification of relevant areas
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o

: \\ Stable estimator of /
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. \, relevant loci S/
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., relevantloci




Results — Component 1
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Distributed PLS



Genetic Data are Sensitive Data!

RESEARCH

HUMAN GENETICS

Deriving genomic diagnoses without
revealing patient genomes

Karthik A. Jagadeesh,'* David J. Wu,'* Johannes A. Birgmeier,’
Dan Boneh,"?{ Gill Bejerano*

Patient genomes are interpretable only in the context of other genomes; however, genome sharing
enables discrimination. Thousands of monogenic diseases have yielded definitive genomic
diagnoses and potential gene therapy targets. Here we show how to provide such diagnoses while
preserving participant privacy through the use of secure multiparty computation. In multiple
real scenarios (small patient cohorts, trio analysis, two-hospital collaboration), we used our methods
to identify the causal variant and discover previously unrecognized disease genes and variants
while keeping up to 99.7% of all participants’ most sensitive genomic information private.

Science, Aug 2017



Avoid Bureaucracy! th




Meta analysis and online learning? th

* Meta analysis
— Every participants runs a local univariate analysis

— Results (p-values, effect sizes) are shared and
combined for a final result

— Common in large genetic studies
— Increasingly considered in imaging, e.g., ENIGMA

* Online learning
— Machine learning method
— Distributed data/data streams
— Models are updated with new batches of data



Meta PLS &

« Massively Multivariate Studies are small

A “meta” version of PLS enables collaborative
studies without the need to exchange individual
level data




Meta PLS A&

Secure multivariate large-scale multi-centric analysis through
on-line learning: an imaging genetics case study

Marco Lorenzi®, Boris Gutman®, Paul M. Thompson®, Daniel C. Alexander?®, Sebastien
b) ) ) b)

Ourselin?, and Andre Altmann? [SIPAIM’16]




Meta PLS

e Distributed PLS:

Y!

=C



Meta PLS

e Distributed PLS:

X

HEE

|| B

HEE

HlE EEEEEEEEE

Y!

=C+_+C

* |Instead of C we can share the decomposition of
C = UAV with a reduced set of components



Meta PLS &

 We compute the final result as PLS of
Uq,..., U4
ViAq, ..., VA4

* Approximation

* Depends on number of shared components
« Compare full PLS vs meta PLS (2-split)

— ‘component similarity’: ug, . U’
— Feature-wise error: ug, - U’

X
Y

meta

meta



SVD - Partial least squares C

N

Y’ qbrain features (~10°)

X
JLl —— 11—

chromosome 1 T T ]
chromosome 22 N individuals

p SNPs

(~10°)

Meta PLS
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Meta-PLS vs Seq-PLS

Sequentlal PLS Meta-PLS

notype components 1-5 phenotype compo notype components 1-5 phenotype compo
Average dot product rage dot product

Bl BE

* 50 repetitions to compute mean and sd
« Shared components explain 90% of variability




Meta-PLS vs Seq-PLS th

Sequential-PLS Meta-PLS

genotype components 1-5 phenotype components 1-5 genotype components 1-5 phenotype components 1-5

Average dot product Average dot product
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Meta-PLS vs Seq-PLS

Sequential-PLS

Genotype Components Phenotype Components
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Number of shared components C

% error

1.4 .
N 02

Lol B 05|
E 0.3

Component number

B 0.9




Practical considerations v

« X and Y require centering and standardization
before SVD

— How best done in a distributed setting?
— Effect of ‘late comers’

* Exploring real world application within

« Meta PLS allows

— Processing large datasets with standard hardware
— Processing large datasets across different sites
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Results — Imaging

Modelled phenotype component Modelled phenotype component Modelled phenotype component
s Y 3 P

Relevant areas Relevant areas Relevant areas

R




PLS & CCA s

« PLS is CCA with “infinite regularization (L,)”

Eigenproblems in Pattern Recognition

Tijl De Bie!, Nello Cristianini?, and Roman Rosipal®

rCCA: | (o, ")

PLS: ( 0 S’SY)
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